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This third part of the Unified Guidance presents core procedures recommended for formal 
detection monitoring at RCRA-regulated facilities. Chapter 16 describes two-sample tests appropriate 
for some small facilities, facilities in interim status, or for periodic updating of background data. These 
tests include two varieties of the t-test and two non-parametric versions-- the Wilcoxon rank-sum and 
Tarone-Ware procedures. Chapter 17 discusses one-way analysis of variance [ANOVA], tolerance 
limits, and the application of trend tests during detection monitoring. Chapter 18 is a primer on several 
kinds of prediction limits, which are combined with retesting strategies in Chapter 19 to address the 
statistical necessity of performing multiple comparisons during RCRA statistical evaluations. Retesting 
is also discussed in Chapter 20, which presents control charts as an alternative to prediction limits. 

As discussed in Section 7.5, any of these detection-level tests may also be applied to 
compliance/assessment and corrective action monitoring, where a background groundwater protection 
standard [GWPS] is defined as a critical limit using two- or multiple-sample comparison tests.  Caveats 
and limitations discussed for detection monitoring tests are also relevant to this situation.  To maintain 
continuity of presentation, this additional application is presumed but not repeated in the following 
specific test and procedure discussions. 

Although other users and programs may find these statistical tests of benefit due to their wider 
applicability to other environmental media and types of data, the methods described in Parts III and IV 
are primarily tailored to the RCRA setting and designed to address formal RCRA monitoring 
requirements. In particular, the series of prediction limit tests found in Chapter 18 is designed to 
address the range of interpretations of the sampling rules in §264.97(g), §264.98(d) and §258.54. 
Further, all of the regulatory tests listed in §264.97(i) and §258.53(h) are discussed, as well as the 
Student’s t-test requirements of §265.93(b). 

Taken as a whole, the set of detection monitoring methods presented in the Unified Guidance 
should be appropriate for almost all the situations likely to be encountered in practice. Professional 
statistical consultation is recommended for the rest. 
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This chapter describes statistical tests between two groups of data, known as two-sample tests. 
These tests may be appropriate for the smallest of RCRA sites performing upgradient-to-downgradient 
comparisons on a very limited number of wells and constituents. They may also be required for certain 
facilities in interim status, and can be more generally used to compare older versus newer data when 
updating background. 

Two versions of the classic Student’s t-test are first discussed: the pooled variance t-test and 
Welch’s t-test. Since both these tests expect approximately normally-distributed data as input, two non-
parametric alternatives to the t-test are also described: the Wilcoxon rank-sum test (also known as the 
Mann-Whitney) and the Tarone-Ware test. The latter is particularly helpful when the sample data exhibit 
a moderate to larger fraction of non-detects and/or multiple detection/reporting limits. 
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A statistical comparison between two sets of data is known as a two-sample test. While several 
varieties of two-sample tests exist, the most common is the parametric t-test. This test compares two 
distinct statistical populations. The goal of the two-sample t-test is to determine whether there is any 
statistically significant difference between the mean of the first population when compared against the 
mean of the second population, based on the results observed in the two respective samples. 

In groundwater monitoring, the typical hypothesis at issue is whether the average concentration at a 
compliance point is the same as (or less than) the average concentration in background, or whether the 
compliance point mean is larger than the background mean, as represented in equation [16.1] below: 

   H0 : µC ≤ µBG   vs.  H A : µC > µBG  [16.1] 

A natural statistic for comparing two population means is the difference between the sample 
means, 

 
xC − xBG( ). When this difference is small, a real difference between the respective population 

means is considered unlikely. However, when the sample mean difference is large, the null hypothesis is 
rejected, since in that case a real difference between the populations seems plausible. Note that an 
observed difference between the sample means does not automatically imply a true population 
difference. Sample means can vary for many reasons even if the two underlying parent populations are 
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identical. Indeed, the Student’s t-test was invented precisely to determine when an observed sample 
difference should be considered significant (i.e., more than a chance fluctuation), especially when the 
sizes of the two samples tend to be small, as is the usual case in groundwater monitoring. 

Although the null hypothesis (H0) represented in equation [16.1] allows for a true compliance point 
mean to be less than background, the behavior of the t-test statistic is assessed at the point where H0 is 
most difficult to verify — that is, when H0 is true and the two population means are identical. Under the 
assumption of equal population means, the test statistic in any t-test will tend to follow a Student’s t-
distribution. This fact allows the selection of critical points for the t-test based on a pre-specified Type I 
error or false positive rate (α). Unlike the similarly symmetric normal distribution, however, the 
Student’s t-distribution also depends on the number of independent sample values used in the test, 
represented by the degrees of freedom [df]. 

The number of degrees of freedom impacts the shape of the t-distribution, and consequently the 
magnitude of the critical (percentage) points selected from the t-distribution to provide a basis of 
comparison against the t-statistic (see Figure 16-1). In general, the larger the sample sizes of the two 
groups being compared, the larger the corresponding degrees of freedom, and the smaller the critical 
points (in absolute value) drawn from the Student’s t-distribution. In a one-sided hypothesis test of 
whether compliance point concentrations exceed background concentrations, a smaller critical point 
corresponds to a more powerful test. Therefore, all other things being equal, the larger the sample sizes 
used in the two-sample t-test, the more protective the test will be of human health and the environment. 

 

 !"#�$��������%#&$'%()����!)%�!*#%!+'�,+��-��.!'"��$"�$$)�+,� �$$&+/�

-5.0 -2.5 0.0 2.5 5.0

0.0

0.1

0.2

0.3

0.4

t-value

 1 df 
 3 df
 7 df
 25 df

 

In groundwater monitoring, t-tests can be useful in at least two ways. First, a t-test can be 
employed to compare background data from one or more upgradient wells against a single compliance 
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well. If more than one background well is involved, all the upgradient data would be pooled into a single 
group or sample before applying the test. 

Second, a t-test can be used to assess whether updating of background data is appropriate (see 
Chapter 5 for further discussion). Specifically, the two-sample t-test can be utilized to check whether 
the more recently collected data is consistent with the earlier data assigned initially as the background 
data pool. If the t-test is non-significant, both the initial background and more recent observations may 
be considered part of the same statistical population, allowing the overall background data set to grow 
and to provide more accurate information about the characteristics of the background population. 

The Unified Guidance describes two versions of the parametric t-test, the pooled variance 
Student’s t-test and a modification to the Student’s t-test known as Welch’s t-test.  This guidance prefers 
the latter t-test to use of Cochran’s Approximation to the Behrens-Fisher (CABF) Student’s t-test. 
Initially codified in the 1982 RCRA regulations, the CABF t-test is no longer explicitly cited in the 1988 
revision to those regulations.  Both the pooled variance and Welch’s t-tests are more standard in 
statistical usage than the CABF t-test. When the parametric assumptions of the two-sample t-test are 
violated, the Wilcoxon rank-sum or the Tarone-Ware tests are recommended as non-parametric 
alternatives. 
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The two-sample t-test has been widely used and carefully studied as a statistical procedure. Correct 
application of the Student’s t-test depends on certain key assumptions. First, every t-test assumes that the 
observations in each data set or group are statistically independent. This assumption can be difficult to 
check in practice (see Chapter 14 for further discussion of statistical independence), especially if only a 
handful of measurements are available for testing. As noted in Chapter 5 in discussing data mixtures, 
lab replicates or field duplicates are not statistically independent and should not be treated as 
independent water quality samples.  That section discussed the limited conditions under which certain 
replicate data might be applicable for t- testing.  Incorrect usage of replicate data was one of the concerns 
that arose in the application of the CABF t-test. 

Second, all t-tests assume that the underlying data are approximately normal in distribution. 
Checks of this assumption can be made using one of the tests of normality described in Chapter 10. The 
t-test is a reasonably robust statistical procedure, meaning that it will usually provide accurate results 
even if the assumption of normality is partially violated. This robustness of the t-test provides some 
insurance against incorrect test results if the underlying populations are non-normal. However, the robust 
assumption is dubious when the parent population is heavily skewed. For data that are lognormal and 
positively skewed, the two-sample t-test can give misleading results unless the data are first log-
transformed. Similarly, a transformation may be needed to first normalize data from other non-normal 
distributions. 

Another assumption particularly relevant to the use of t-tests in groundwater monitoring is that the 
population means need to be stable or stationary over the time of data collection and testing.  As 
discussed in Part II of the guidance, many commonly monitored groundwater parameters exhibit mean 
changes in both space and time.  Consequently, correct application of the t-test in groundwater requires 
an implicit assumption that the two populations being sampled (e.g., a background well and a 
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compliance point well) have average concentrations that are not trending with time. Time series plots 
and diagnostic trend tests (Chapter 14) can sometimes be used to check this assumption. 

The t-test does an excellent job of identifying a stable mean level difference between two 
populations. However, if one or both populations have trends observable in the sample measurements, 
the t-test may have difficulty correctly identifying a difference between the two groups. For instance, if 
earlier samples in a compliance well were uncontaminated but later samples are increasing with time, the 
t-test may still provide a non-significant result. With compliance point concentrations increasing relative 
to background, the t-test may not be the appropriate method for identifying this change.  Some form of 
trend testing will provide a better evaluation. 

Another concern in applying the t-test to upgradient-downgradient interwell comparisons is that the 
null hypothesis is assumed to be true unless the downgradient well becomes contaminated.  Absent such 
an impact, the population means are implicitly assumed to be identical.  Spatial variability in 
background and compliance well groundwater concentrations for certain monitoring constituents do not 
allow clear conditions for comparisons intended to identify a release at a downgradient compliance well.  
Natural or pre-existing synthetic mean differences among background wells will be confused with a 
potential release.  In such cases, neither the two-sample t-test nor any interwell procedure comparing 
upgradient against downgradient measurements is likely to give a correct conclusion. 

One final requirement for running any t-test is that each group should have an adequate sample 
size. The t-test will have minimal statistical power to identify any but the largest of concentration 
differences if the sample size in each group is less than four.  Four measurements per group should be 
considered a minimum requirement, and much greater power will accrue from larger sample sizes. Of 
course, the attractiveness of larger data sets must be weighed against the need to have statistically 
independent samples and the practical limitation of semi-annual or annual statistical evaluations. These 
latter requirements often constrain the frequency of sampling so that it may be impractical to secure 
more than 4 to 6 or possibly 8 samples during any annual period. 
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In the case of two independent samples from normal populations with common variance, the 
Student’s t-test statistic is expressed by the following equation: 

 

  

t = xC − xBG( ) nBG − 1( )sBG
2 + nC − 1( )sC

2

nBG + nC − 2( )
�

�
�
�

�
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�

1
nBG

+ 1
nC

�

�	



��
 [16.2] 

The first bracketed quantity in the denominator is known as the pooled variance, a weighted average of 
the two sample variances. The entire denominator of equation [16.2] is labeled the standard error of the 
difference (SEdiff). It represents the probable chance fluctuation likely to be observed between the 
background and compliance point sample means when the null hypothesis in equation [16.1] is true. 
Note that the formula for SEdiff depends on both the pooled variance and the sample size of each group. 
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When the null hypothesis (H0) is satisfied and the two populations are truly identical, the test 
statistic in equation [16.2] behaves according to an exact Student’s t-distribution. This fact enables 
critical points for the t-test to be selected based on a pre-specified Type I error rate (�) and an 
appropriate degrees of freedom. In equation [16.2], the joint degrees of freedom is equal to 

  
nBG + nC − 2( ),  the sum of the background and compliance point sample sizes less two degrees of 

freedom (one for each mean estimate). 
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Along with the general requirements for t-tests, the pooled variance version of the test assumes that 
the population variances are equal in both groups. Since only the sample variances will be known, this 
assumption requires a formal statistical test of its own such as Levene’s test described in Chapter 11. 
An easier, descriptive method is to construct side-by-side box plots of both data sets. If the population 
variances are equal, the interquartile ranges represented by the box lengths should also be comparable. If 
the population variances are distinctly different, on the other hand, the box lengths should also tend to be 
different, with one box much shorter than the other. 

When variances are unequal, the Unified Guidance recommends Welch’s t-test be run instead. 
Welch’s t-test does not require the assumption of equal variances across population groups. Furthermore, 
the performance of Welch’s t-test is almost always equal or superior to that of the usual Student’s t-test. 
Therefore, one may be able to skip the test of equal variances altogether before running Welch’s t-test. 

All t-tests require approximately normally-distributed data.  If a common variance (�2) exists 
between the background and compliance point data sets, normality in the pooled variance t-test can be 
assessed by examining the combined set of background and compliance point residuals.   A residual can 
be defined as the difference between any individual value and its sample group mean (e.g.,  xi − xBG  for 
background values xi). Not only will the combined set of residuals allow for a more powerful test of 
normality than if the two samples are checked separately, but it also avoids a difficulty that can occur if 
the sample measurements are naively evaluated with the Shapiro-Wilk multiple group test.  The multiple 
group normality test allows for populations with different means and different variances.  If an equal 
variance check has not already been made, the multiple group test could register both populations as 
being normal even though the two population variances are distinctly different.  The latter would violate 
a key assumption of the pooled variance t-test. To avoid this potential problem, either always check 
explicitly for equal variances before running the pooled variance t-test, or consider running Welch’s t-
test instead. 
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Step 1. To conduct the two-sample Student’s t-test at an �-level of significance, first compute the 
sample mean ( x ) and standard deviation (s) of each group. Check for equal variances using a 
test from Chapter 11. If there is no evidence of heteroscedasticity, check normality in both 
samples, perhaps by calculating the residuals from each group and running a normality test on 
the combined data set. 
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Step 2. Once the key assumptions have been checked, calculate the two-sample t-statistic in equation 
[16.2], making use of the sample mean, sample standard deviation, and sample size of each 
group. 

Step 3. Set the degrees of freedom to   df = nBG + nC − 2 , and look up the (1–α) × 100th percentage 
point from the t-distribution in Table 16-1 in Appendix D. Compare this α-level critical point 
against the t-statistic. If the t-statistic does not exceed the critical point, conclude there is 
insufficient evidence of a significant difference between the two population means. If, 
however, the t-statistic is greater than the critical point, conclude that the compliance point 
population mean is significantly greater than the background mean. 

� ��4��
��������

Consider the quarterly sulfate data in the table below collected from one upgradient and one 
downgradient well during 1995-96. Use the Student’s t-test to determine if the downgradient sulfate 
measurements are significantly higher than the background values at an � = 0.01 significance level. 
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Step 1. Compute the sample mean and standard deviation in each well, as listed in the table above. 
Then compute the sulfate residuals by subtracting the well mean from each individual value. 
These differences are also listed above. Comparison of the sample variances shows no 
evidence that the population variances are unequal. Further, a probability plot of the combined 
set of residuals (Figure 16-2) indicates that the normal distribution appears to provide a 
reasonable fit to these data. 
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Step 2. Compute the two-sample t-statistic on the raw sulfate measurements using equation [16.2]. 
Note that the background sample size is nBG = 8 and the downgradient sample size is nC = 6. 

 

  

t = 608.33− 536.25( ) 7 26.6927( )2
+ 5 18.3485( )2

8 + 6 − 2
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��
= 5.66  

Step 3. Compute the degrees of freedom as df = 8 + 6 – 2 = 12. Since α = .01, the critical point for the 
test is the upper 99th percentile of the t-distribution with 12 df. Table 16-1 in Appendix D 
then gives the value for tcp = 2.681. Since the t-statistic is clearly larger than the critical point, 
conclude the downgradient sulfate population mean is significantly larger than the background 
population mean at the 0.01 level. � 
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The pooled variance Student’s t-test in Section 16.1.1 makes the explicit assumption that both 
populations have a common variance, σ2. For many wells and monitoring constituents, local 
geochemical conditions can result in both different well means and variances.   A contamination pattern 
at a compliance well can have very different variability than its background counterpart. 

Welch’s t-test was designed as a modification to the Student’s t-test when the population variances 
might differ between the two groups. The Welch’s t-test statistic is defined by the following equation: 
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t = xC − xBG( ) sBG

2

nBG

+
sC

2

nC

 [16.3] 

The denominator of equation [16.3] is also called the standard error of the difference (SEdiff), similar to 
the pooled variance t-test.  But it is a different weighted estimate based on the respective sample 
variances and sample sizes, reflecting the fact that the two population variances may not be the same. 

The most difficult part of Welch’s t-test is deriving the correct degrees of freedom. Under the 
assumption of a common variance, the pooled variance estimate incorporated into the usual Student’s t-
test has 

  
df = nBG + nC − 2( ) degrees of freedom, representing the number of independent “bits” of 

sample information included in the variance estimate. In Welch’s t-test, the derivation of the degrees of 
freedom is more complicated, but can be approximately computed with the following equation: 
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Despite its lengthier calculations, Welch’s t-test has several practical advantages. Best and Rayner 
(1987) found that among statistical tests specifically designed to compare two populations with different 
variances, Welch’s t-test exhibited comparable statistical power (for df � 5) and was much easier to 
implement in practice than other tests they examined.  Moser and Stevens (1992) compared Welch’s t-
test against the usual pooled variance t-test and determined that Welch’s procedure was the more 
appropriate in almost every case. The only advantage registered by the usual Student’s t-test in their 
study was in the case where the sample sizes in the two groups were unequal and the population 
variances were known to be essentially the same. In practice, the population variances will almost never 
be known in advance, so it appears reasonable to use Welch’s t-test in the majority of cases where a two-
sample t-test is warranted. 
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  Welch's t-test is also a reasonably robust statistical procedure, and will usually provide accurate 
results even if the assumption of normality is partially violated. This robustness of the t-test provides 
some insurance against incorrect test results if the underlying populations are non-normal. But heavily 
skewed distributions do require normalizing transformations.  Certain limitations apply when using 
transformed data, discussed in the following section. 

Unlike the pooled variance t-test, Welch’s procedure does not require that the population variances 
be equal in both groups.  Other general requirements of t-tests, however, such as statistical independence 
of the sample data, lack of spatial variability when conducting an interwell test, and stationarity over 
time, are applicable to Welch’s t-test and needs to be checked prior to running the procedure. 

Because the variances of the tested populations may not be equal, an assessment of normality 
cannot be made under Welch’s t-test by combining the residuals (as with the pooled variance t-test), 
unless an explicit check for equal variances is first conducted. The reason is that the combined residuals 
from normal populations with different variances may not test as normal, precisely because of the 
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heteroscedasticity. Since this latter variance check is not required for Welch’s test, it may be easier to 
input the sample data directly into the multiple group test of normality described in Chapter 10. 
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Step 1. To run the two-sample Welch’s t-test, first compute the sample mean 
 

x( ), standard deviation 

(s), and variance (s2) in each of the background (BG) and compliance point (C) data sets. 

Step 2. Compute Welch’s t-statistic with equation [16.3]. 

Step 3. Compute the approximate degrees of freedom in equation [16.4] using the sample variance 
and sample size from each group. Since this quantity often results in a fractional amount, 
round the approximate fdˆ  to the nearest integer. 

Step 4. Depending on the α significance level of the test, look up an appropriate critical point (tcp) in 
Table 16-1 in Appendix D. This entails finding the upper 

  
1− α( )× 100th  percentage point of 

the Student’s t-distribution with df degrees of freedom. 

Step 5. Compare the t-statistic against the critical point. If t � tcp, conclude there is no statistically 
significant difference between the background and compliance point population means. If, 
however, t > tcp, conclude that the compliance point population mean is significantly greater 
than the background mean at the α level of significance. 
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Consider the following series of monthly benzene measurements (in ppb) collected over 8 months 
from one upgradient and one downgradient well. What significant difference, if any, does Welch’s t-test 
find between these populations at the α = .05 significance level? 
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Step 1. Compute the sample mean, standard deviation, and variance of each group as in the table 
above. 

Step 2. Use equation [16.3] to compute Welch’s t-statistic: 

 
  
t = 31.2 − 3.0( ) 28.204

8
+ 3997.131

8
= 1.257  

Step 3. Compute the approximate degrees of freedom using equation [16.4]: 
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Step 4. Using Table 16-1 in Appendix D and given α = .05, the upper 95% critical point of the 
Student’s t-distribution with 7 df is equal to 1.895. 

Step 5. Compare the t-statistic against the critical point, tcp. Since t < tcp, the test on the raw 
concentrations provides insufficient evidence of a true difference in the population means. 
However, given the order of magnitude difference in the sample means and the fact that 
several of the downgradient measurements are substantially larger than almost all the 
background values, we might suspect that one or more of the t-test assumptions was violated, 
possibly invalidating the result. � 
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Users should recall that if the underlying populations are lognormal instead of normal and Welch’s 
t-test is run on the logged data, the procedure is not a comparison of arithmetic means but rather between 
the population geometric means.   In the case of a lognormal distribution, the geometric means are 
equivalent to the population medians.  In effect, a test of the log-means is equivalent to a test of the 
medians in terms of the raw concentrations. Both the population geometric mean and the lognormal 
median can be estimated from the logged measurements as ( )yexp , where   y = log x  represents a logged 
value and  y  is the log-mean. On the other hand, the (arithmetic) lognormal mean on the concentration 

scale would be estimated as 
  
exp y + sy

2 2( ), a quantity larger than the geometric mean or median due to 

the presence of the term involving 
  
sy

2 , the log-variance. 

Although a t-test conducted in the logarithmic domain is not a direct comparison of the arithmetic 
means, there are situations where that comparison can be inferred from the test results. For instance, 
consider using the pooled variance two-sample Student’s t-test on logged data with a common (i.e., 
equal) population log-variance (

  
σ y

2 ) in each group. In that case, finding a larger geometric mean or 

median in a compliance well population when compared to background also implies that the compliance 
point arithmetic mean is larger than the background arithmetic mean. However, when using Welch’s t-
test, the assumption of equal variances is not required. Because of this, on rare occasions one might find 
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a larger compliance point geometric mean or median when testing the log-transformed data, even though 
the compliance point population arithmetic mean is smaller than the background arithmetic mean. 

Fortunately, such a reversal can only occur in the unlikely situation that the background population 
log-variance is distinctly larger than the compliance point log-variance. Factors contributing to an 
increase in the log-mean concentration level in lognormal populations often serve, if anything, to also 
increase the log-variance, and almost never to decrease it. Consequently, t-test results indicating a 
compliance point geometric mean higher than background should very rarely imply a less-than-
background compliance point log-variance. This in turn will generally ensure that the compliance point 
arithmetic mean is also larger than the background arithmetic mean, so that a test of the log-transformed 
measurements can be used to infer whether a difference exists in the population concentration means. 

One caution in this discussion is for cases where the Welch’s t-test is not significant on the log-
transformed measurements. Because the log-variances (

  
σ y

2 ) are not required to be equal in the two 

populations when running Welch’s t-test, yet the arithmetic lognormal mean depends on both the 
population log-mean (

 
µ y ) and the log-variance through the quantity 

  
exp µ y + σ y

2 2( ), it should not be 

inferred that a non-significant comparison on the log-scale between a compliance point and background 
is equivalent to finding no difference between the lognormal arithmetic means. If the log-variances differ 
but the log-means do not, the lognormal arithmetic means will still be different even though the 
lognormal medians might be identical. 

Therefore, if a comparison of arithmetic means is required, but the statistical populations are 
lognormal, care must be taken in interpreting the results of Welch’s t-test. Two possible remedies would 
include: 1) only running a t-test on lognormal data if the log-variances can be shown to be approximately 
equivalent (this would allow use of the pooled variance t-test); and 2) using a non-parametric two-
sample bootstrap procedure on the original (non-logged) measurements to compare the arithmetic means 
directly.  Consultation with a professional statistician may be required in this second case. 

� ��4��
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The benzene data from Example 16-2 indicated no significant upgradient-to-downgradient 
difference in population means when tested on the raw measurement scale. Check to see whether the 
same data more closely approximate a lognormal distribution and conduct Welch’s t-test under that 
assumption. 
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Step 1. First check normality of the original measurements. To do this, compute the Shapiro-Wilk 
statistic (SW) separately for each well. SW = 0.505 for the background data, and SW = 0.544 
for the downgradient well. Combining these two values using the equations in Section 10.7, 
the multiple group Shapiro-Wilk statistic becomes G = –6.675, which is significantly less than 
the 5% critical point of –1.645 from the standard normal distribution.1 Thus, the assumption of 
normality was violated in Example 16-2. 

 Step 2. Compute the log-mean, log-standard deviation, and log-variance of each group, as listed 
above. Then compute the multiple group Shapiro-Wilk test to check for (joint) normality on 
the log-scale. The respective SW statistics now increase to 0.818 for the background data and 
0.964 for the downgradient well.  Combining these into an overall test, the multiple group 
Shapiro-Wilk statistic becomes –0.721 which now exceeds the α = 0.05 standard normal 
critical point. A log transformation adequately normalizes the benzene data — suggesting that 
the underlying populations are lognormal in distribution — so that Welch’s t-test can be run 
on the logged data. 

Step 2. Using the logged measurements and equation [16.3], the t-statistic becomes: 

 
  
t = 1.876 − 0.372( ) 1.1719

8
+ 3.9392

8
= 1.88  

 

                                                 

1  Note that α = 5% is used in this example because the total sample size (BG and DG) is n = 16. Nevertheless, the test would 
also fail at α = 1% or just about any significance level one might choose. 
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Step 3. Again using the log-variances and equation [16.4], the approximate df works out to: 

 

  

df = 1.1719
8

+ 3.9392
8

�

�
�

�

�
�

2 1.1719 8�� ��
2

7
+

3.9392 8�� ��
2

7

�

�

�
�

�

�

�
�

= 10.8 ≈ 11 

 Note that the approximate df in Welch’s t-test is somewhat less than the value that would be 
computed for the two-sample pooled variance Student’s t-test. In that case, with 8 samples per 
data set, the df would have been 14 instead of 11. The reduction in degrees of freedom is due 
primarily to the apparent difference in variance between the two groups. 

Step 4. Using Table 16-1 in Appendix D and given α = .05, the upper 95% critical point of the 
Student’s t-distribution with 11 df is equal to 1.796. 

Step 5. Comparing t against tcp, we find that 1.88 exceeds 1.796, suggesting a statistically significant 
difference between the background and downgradient population log-means, at least at the 5% 
level of significance. This means that the downgradient geometric mean concentration — and 
equivalently for lognormal populations, the median concentration — is statistically greater 
than the same statistical measure in background. Further, since the downgradient sample log-
variance is over three times the magnitude of the background log-variance, it is also probable 
that the downgradient arithmetic mean is larger than the background arithmetic mean. 
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A note of caution in this example is that the same test run at the α = 0.01 level would yield a 
non-significant result, since the upper 99% Student’s t critical point in that case would be 
2.718. The fact that the conclusion differs based on a small change to the significance level 
ought to prompt review of other t-test assumptions. A check of the downgradient sample 
measurements indicates an upward (non-stationary) trend over the sample collection period 
(Figure 16-3). This reinforces the fact that the t-test can be ill-suited for measuring differences 
between populations when trends over time cause instability in the underlying population 
means. It might be necessary to either perform a formal test of trend at the downgradient well 
or to limit the compliance data included in the evaluation only to those most representative of 
current conditions at the downgradient well (e.g., the last four measurements). � 
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When the underlying distribution of a data set is unknown and cannot be readily identified as 
normal or normalized via a transformation, a non-parametric alternative to the two-sample t-test is 
recommended. Probably the best and most practical substitute is the Wilcoxon rank-sum test (Lehmann, 
1975; also known as the two-sample Mann-Whitney U test), which can be used to compare a single 
compliance well or data group against background. Like many non-parametric methods, the Wilcoxon 
rank-sum test is based on the ranks of the sample measurements rather than the actual concentrations.  
Some statistical information contained in the original data is lost when switching to the Wilcoxon test, 
since it only uses the relative magnitudes of data values. 

The benefit is that the ranks can be used to conduct a statistical test even when the underlying 
population has an unusual form and is non-normal. The parametric t-test depends on the population 
being at least approximately normal; when this is not the case, the critical points of the t-test can be 
highly inaccurate. The Wilcoxon rank-sum test is also a statistically efficient procedure. That is, when 
compared to the t-test using normally-distributed data especially for larger sample sizes, it performs 
nearly as well as the t-test.  Because of this fact, some authors (e.g., Helsel and Hirsch, 2002) have 
recommended routine use of the Wilcoxon rank-sum even when the parametric t-test might be 
appropriate. 

Although a reasonable strategy for larger data sets, one should be careful about automatically 
preferring the Wilcoxon over the t-test on samples as small as those often available in groundwater 
monitoring.  For instance, a Wilcoxon rank-sum test of four samples in each of a background and 
compliance well and an α = 0.01 level of significance can never identify a significant difference between 
the two populations. This is true no matter what the sample concentrations are, even if all four 
compliance measurements are larger than any of the background measurements. This Wilcoxon test will 
require at least five samples in at least one of the groups, or  a higher level of significance (say α = 0.05 
or 0.10) is needed. 

The Wilcoxon test statistic (W) consists of the sum of the ranks of the compliance well 
measurements. The rationale of the test is that if the ranks of the compliance data are quite large relative 
to the background ranks, then the hypothesis that the compliance and background values came from the 
same population ought to be rejected. Large values of the W statistic give evidence of possible 
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contamination in the compliance well. Small values of W, on the other hand, suggest there is little 
difference between the background and compliance well measurements. 
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The Wilcoxon rank-sum test assumes that both populations being compared follow a common, 
though unknown, parent distribution under the null hypothesis (Hollander and Wolfe, 1999). Such an 
assumption is akin to that used in the two-sample pooled variance Student’s t-test, although the form of 
the common distribution need not be normal. The Wilcoxon test assumes that both population variances 
are equal, unlike Welch’s t-test. Side-by-side box plots of the two data groups can be compared 
(Chapter 9) to examine whether or not the level of variability appears to be approximately equal in both 
samples. Levene’s test (Chapter 11) can also be applied as a formal test of heteroscedasticity given its 
relative robustness to non-normality. If there is a substantial difference in variance between the 
background and compliance point populations, one remedy is the Fligner-Policello test (Hollander and 
Wolfe, 1999), a more complicated rank-based procedure. 

The Wilcoxon procedure as described in the Unified Guidance is generally used as an interwell 
test, meaning that it should be avoided under conditions of significant natural spatial variability. 
Otherwise, differences between background and compliance point wells identified by the test may be 
mistakenly attributed to possible contamination, instead of natural differences in geochemistry, etc. At 
small sites, the Wilcoxon procedure can be adapted for use as an intrawell test, involving a comparison 
between intrawell background and more recent measurements from the same well. However, the per-
comparison false positive rate in this case should be raised to either α = 0.05 or α = 0.10. More 
generally, a significance level of at least 0.05 should be adopted whenever the sample size of either 
group is no greater than n = 4. 

In addition to spatial stationarity (i.e., lack of natural spatial variability), the Wilcoxon rank-sum 
test assumes that the tested populations are stationary over time, so that mean levels are not trending 
upward or downward. As with the t-test, if trends are evident in time series plots of the sample data, a 
formal trend test might need to be employed instead of the Wilcoxon rank-sum, or the scope of the 
sample may need to be limited to only include data representative of current groundwater conditions. 
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When ties are present in a combined data set, adjustments need to be made to the usual Wilcoxon 
test statistic. Ties will occur in two situations: 1) detected measurements reported with the same 
numerical value and 2) non-detect measurements with a common RL. Non-detects are considered ties 
because the actual concentrations are unknown; presumably, every non-detect has a concentration 
somewhere between zero and the quantitation limit [QL]. Since these measurements cannot be ordered 
and ranked explicitly, the approximate remedy in the Wilcoxon rank-sum procedure is to treat such 
values as ties. 

One may be able to partially rank the set of non-detects by making use of laboratory-supplied 
analytical qualifiers. As discussed in Section 6.3, there are probable concentration differences between 
measurements labeled as undetected (i.e., given a “U” qualifier), non-detect (usually reported without a 
qualifier), or as estimated concentrations (usually labeled with “J” or “E”). One reasonable strategy is to 
group all U values as the lowest set of ties, other non-detects as a higher set of ties, and to rank all J 
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and/or E values according to their estimated concentrations. In situations where estimated values for J 
and E samples are not provided, treat these measurements as the highest group of tied non-detects. 
Always give the highest ranks to explicitly quantified or estimated concentration measurements. In this 
way, a more detailed partial ranking of the data will be possible. 

Tied observations in the Wilcoxon rank-sum test are handled as follows. All tied observations in a 
particular group should receive the same rank. This rank called the midrank (Lehmann, 1975) is 
computed as the average of the ranks that would be assigned to a group of ties if the tied values actually 
differed by a tiny amount and could be ranked uniquely. For example, if the first four ordered 
observations are all the same, the midrank given to each of these samples would be equal to (1 + 2 + 3 + 
4)/4 = 2.5. If the next highest measurement is a unique value, its rank would be 5, and so on until all 
observations are appropriately ranked. A more detailed example is illustrated in Figure 16-4. 
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If either of the samples contains a substantial fraction of non-detect measurements (say more than 
20-30%), identification of an appropriate distributional model (e.g., normality) may be difficult, 
effectively ruling out the use of parametric tests like the t-test. Even when a normal or other parametric 
model can be fit to such left-censored data, a t-test cannot be run without imputing estimated values for 
each non-detect. Past guidance has recommended the Wilcoxon rank-sum test as an alternative to the t-
test in the presence of non-detects, with all non-detects at a common RL being treated as tied values. 

If the combined data set contains a single, common RL, that limit is smaller than any of the 
detected/quantified values, and the proportion of censored data is small (say no more than 10-15% of the 
total), it may be reasonable to treat the non-detects as a set of tied values and to apply the Wilcoxon 
rank-sum test adjusted for ties (described below). More generally, however, the statistical behavior of 
the Wilcoxon statistic depends on a full and accurate ranking of all the measurements. Groups of left-
censored values cannot be ranked with certainty, even if each such measurement possesses a common 
RL. The problem is compounded in the presence of multiple RLs and/or quantified values less than the 
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RL(s). What is the relative ranking, for instance, of the pair of measurements (<1, <5)?  A higher RL 
does not guarantee that the second observation is larger in magnitude than the first. A similar uncertainty 
plagues the pair of values (4, <10). And there is no guarantee either that the pair (<2, <2) is actually tied. 
One may be able to partially rank the set of non-detects by making use of laboratory-supplied analytical 
qualifiers as described in the previous section. 

Because non-detects generally prevent a complete ranking of the measurements, the Wilcoxon 
rank-sum test is not recommended for most censored data sets. Instead, a modified version of the 
Tarone-Ware test (Hollander and Wolfe, 1999) is presented in Section 16.3. The Tarone-Ware test is 
essentially a generalization of the Wilcoxon test specifically designed to accommodate censored values. 

� 
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Step 1. To conduct the Wilcoxon rank-sum test, first combine the compliance and background data 
into a single data set. Sort the combined values from smallest to largest, and — if there are no 
tied values or non-detects with a common RL — rank the ordered values from 1 to N. Assume 
there are n compliance well samples and m background samples so that N = m + n. Denote the 
ranks of the compliance samples by Ci and the ranks of the background samples by Bi. 

Step 2. If there are groups of tied values (including non-detects with a common RL), form the 
midranks of the combined data set by assigning to each set of ties the average of the potential 
ranks the tied members would have been given if they could be uniquely ranked. 

Step 3. Sum the ranks of the compliance samples to get the Wilcoxon statistic W: 

   W = Σ i=1
n Ci  [16.5] 

Step 4. Find the α-level critical point of the Wilcoxon test, making use of the fact that the sampling 
distribution of W under the null hypothesis, H0, can be approximated by a normal curve. By 
standardizing the statistic W (i.e., subtracting off its mean or expected value and dividing by 
its standard deviation), the standardized statistic or z-score, Z, can be approximated by a 
standard normal distribution. Then an appropriate critical point (zcp) can be determined as the 
upper (1–α) × 100th percentage point of the standard normal distribution, listed in Table 10-1 
in Appendix D. 

Step 5. To compute Z when there are no ties, first compute the expected value and standard deviation 
of W, given respectively by the following equations: 

 
  
E W( )=

1
2

n N + 1( ) [16.6] 

 
  
SD W( )=

1
12

mn N + 1( ) [16.7] 

 Then compute the approximate z-score for the Wilcoxon rank-sum test as: 
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Z =

W − E(W ) − 1 2
SD(W )

 [16.8] 

 The factor of 1/2 in the numerator serves as a continuity correction since the discrete 
distribution of the Wilcoxon statistic W is being approximated by a continuous normal 
distribution. 

Step 6. If there are tied values, compute the expected value of W using [16.6] and the standard 
deviation of W adjusted for the presence of ties with the equation: 

 
  
SD*(W ) =

mn(N + 1)
12

1− Σi=1
g ti

3 − ti

N 3 − N

�

�
	




�
�  [16.9] 

where g equals the number of different groups of tied observations and ti represents the 
number of tied values in the ith group. 

Then compute the approximate z-score for the Wilcoxon rank-sum test as: 

 
  
Z =

W − E W( )− 1 2

SD* W( )  (16.10) 

Step 7. Compare the approximate z-score against the critical point, zcp. If Z exceeds zcp, conclude that 
the compliance well concentrations are significantly greater than background at the α level of 
significance. If not, conclude that the null hypothesis of equivalent background and 
compliance point distributions cannot be rejected. 
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The table below contains copper concentrations (ppb) found in groundwater samples at a Western 
monitoring facility. Wells 1 and 2 denote background wells while Well 3 is a single downgradient well 
suspected of being contaminated. Calculate the Wilcoxon rank-sum test on these data at the α = .01 level 
of significance. 
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Step 1. Sort the N = 18 observations from least to greatest. Since there are 3 pairs of tied values, 
compute the midranks as in the table below. Note that m = 12 and n = 6. 

Step 2. Compute the Wilcoxon statistic by summing the compliance well ranks, so that W = 84.5. 

Step 3. Using α = .01, find the upper 99th percentage point of the standard normal distribution in 
Table 10-1 of Appendix D. This gives a critical value of zcp = 2.326. 
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Step 4. Compute the expected value and adjusted standard deviation of W using equations [16.6] and 
(16.10), recognizing there are 3 groups of ties with ti = 2 measurements in each group: 

 
  
E W( )=

1
2

⋅6 ⋅19 = 57  

 
  
SD W( )=

1
12

⋅12 ⋅ 6 ⋅ 18 + 1( ) 1− 3 ⋅
23 − 2

183 − 18

�

�	



��
�

�
�
�

�

�
�
�

= 113.647 = 10.661  
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Then compute the standardized statistic or z-score, Z, using equation (16.10): 

 
  
Z =

84.5 − 57 − 0.5
10.661

= 2.533  

Step 5. Compare the observed z-score against the critical point zcp. Since Z = 2.533 > 2.326 = z.99, 
there is statistically significant evidence of possible contamination in the compliance well at 
the α = .01 significance level. � 
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In statistical terms, non-detect measurements represent left-censored values, in which the ‘true’ 
magnitude is known only to exist somewhere between zero and the RL, i.e., within the concentration 
interval [0, RL). The uncertainty introduced by non-detects impacts the applicability of other two-sample 
comparisons like the t-test and Wilcoxon rank-sum test. Because the Student’s t-test cannot be run 
unless a specific magnitude is assigned to each observation, estimated or imputed values need to be 
assigned to the non-detects. The Wilcoxon procedure requires that every observation be ranked in 
relation to other values in the combined sample, even though non-detects allow at best only a partial 
ranking, as discussed in Section 16.2. 

The Tarone-Ware two-sample test can be utilized to overcome these limitations for many 
groundwater data with substantial fractions of non-detects along with multiple RLs. Tarone and Ware 
(1977) actually proposed a family of tests to analyze censored data.  One variant of this family is the 
logrank test, frequently used in survival analysis for right-censored data.  Another variant is known as 
Gehan’s generalized Wilcoxon test (Gehan, 1965). The Unified Guidance presents the variant 
recommended by Tarone and Ware, slightly modified to account for left-censored measurements. 

The key benefit of the Tarone-Ware procedure is that it is designed to provide a valid statistical 
test, even with a large fraction of censored data. As a non-parametric test, it does not require normally-
distributed observations. In addition, non-detects do not have to be imputed or even fully ranked. 
Instead, for each detected concentration (c), a simple count needs to be made within each sample of the 
number of detects and non-detects no greater in magnitude than c. These counts are then combined to 
form the Tarone-Ware statistic. 
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The null hypothesis (H0) under the Tarone-Ware procedure assumes that the populations in 
background and the compliance well being tested are identical. This implies that the variances in the two 
distributions are the same, thus necessitating a check of equal variances. With many non-detect data sets, 
it can be very difficult to formally test for heteroscedasticity. Often the best remedy is to make an 
informal, visual check of variability using side-by-side box plots (Chapter 9), setting each non-detect to 
half its RL. 
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The Tarone-Ware test will typically be used as an interwell test, meaning that it should be avoided 
under conditions of significant natural spatial variability. In addition, the tested populations should be 
stationary over time, so that mean levels are not trending upward or downward. Both assumptions can be 
more difficult to verify with censored data. Spatial variation can sometimes be checked with a non-
parametric Kruskal-Wallis analysis of variance (Chapter 17). Trends with censored data can be 
identified with the Mann-Kendall test (Chapter 14). 

As with other two-sample tests, if a trend is identified in one or both samples, a formal trend test 
may be needed instead of the Tarone-Ware, or the scope of the sample may need to be limited to only 
include data representative of current groundwater conditions. 

Because the Tarone-Ware test presented in the Unified Guidance depends on counts of 
observations with magnitudes no greater than each detected concentration, and in that sense generalizes 
the ranking process used by the Wilcoxon rank-sum procedure, it is recommended that estimated 
concentrations (i.e., sample measurements assigned unique magnitudes but labeled with qualifiers “J” or 
“E”) be treated as detections for the purpose of computing the Tarone-Ware statistic. Such observations 
provide valuable statistical information about the relative ranking of each censored sample, even if 
estimated concentrations possess larger measurement uncertainty than fully quantified values. 
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Step 1. To compare a background data set against a compliance well using the Tarone-Ware test, first 
combine the two samples. Locate and sort the k distinct detected values and label these as: 

 )()1()2()1( kk wwww ���� −�  

 Note that the set of w’s will not include any RLs from non-detects. Also, if two or more 
detects are tied, k will be less than the total number of detected measurements. 

Step 2. For the combined sample, count the number of observations (described by Tarone & Ware as 
‘at risk’) for each distinct detected concentration. That is, for i = 1,…,k, let ni = the number of 
detected values no greater than w(i) plus the number of non-detects with RLs no greater than 
w(i). Also let di = the number of detects with concentration equal to w(i).  This value will equal 
1 unless there are multiple detected values with the same reported concentration. 

Step 3. For the compliance sample, count the observations ‘at risk’, much as in Step 2.  For i = 1 to k, 
let ni2 = the number of detected compliance values no greater than w(i) plus the number of 
compliance point non-detects with RLs no greater than w(i). Also let di2 = the number of 
compliance point detects with concentration equal to w(i).   Note that di2 = 0 if w(i) represents a 
detected value from background.  Also compute ni1, the number ‘at risk’ in the background 
sample. 

Step 4. For i = 1 to k, compute the expected number of compliance point detections using the formula: 

   Ei2 = dini2 ni  (16.11) 

 Also compute the variance of the number of compliance point detections, using the equation: 
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Vi2 =

di ni − di( )ni1ni2

ni
2 ni − 1( )  (16.12) 

 Note in equation (16.12) that if ni = 1 for the smallest detected value, the numerator of Vi2 will 
necessarily equal zero (since di = 1 in that case), so compute Vi2 = 0. 

Step 5. Construct the Tarone-Ware statistic (TW) with the equation: 

 

  

TW =
ni di2 − Ei2( )i=1

k

�
niVi2i=1

k

�
 (16.13) 

Step 6. Find the α-level critical point of the Tarone-Ware test, making use of the fact that the 
sampling distribution of TW under the null hypothesis, H0, is designed to approximately 
follow a standard normal distribution. An appropriate critical point (zcp) can be determined as 
the upper (1–α) × 100th percentage point of the standard normal distribution, listed in Table 
10-1 of Appendix D. 

Step 7. Compare TW against the critical point, zcp. If TW exceeds zcp, conclude that the compliance 
well concentrations are significantly greater than background at the α level of significance. If 
not, conclude that the null hypothesis of equivalent background and compliance point 
distributions cannot be rejected. 

� ��4��
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A heavily industrial site has been historically contaminated with tetrachloroethylene [PCE]. Using 
the Tarone-Ware procedure at an � = .05 significance level, test the following PCE measurements 
collected from one background and one compliance well. 
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Step 1. Combine the background and compliance point samples. List and sort the distinct detected 
values (as in the table below), giving k = 10. Note that the 4 non-detects comprise 28% of the 
combined data. 

Step 2. Compute the number of measurements (ni) in the combined sample ‘at risk’ for each distinct 
detected value (w(i)), indexed from i = 1,…, 10, by adding the number of detects and non-
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detects no greater than w(i), as listed in column 6 of the table below. Also list in column 3 the 
number of detected values (di) exactly equal to w(i). 

Step 3. For the compliance point sample, compute the number (ni2) ‘at risk’ for each distinct detected 
value, as listed in column 5 below. Also compute the number (ni1) ‘at risk’ for the background 
sample (column 4) and the number of compliance point measurements exactly equal to w(i) 
(column 2). 

Step 4. Use equations (16.11) and (16.12) to compute the expected value (Ei2) and variance (Vi2) of 
the number of compliance point detections at each w(i) (columns 7 and 8 below). 
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Step 5. Calculate the Tarone-Ware statistic (TW) using equation (16.13): 

 
( ) ( ) ( ) ( )

85.1
2449.142041.725.201

5714.1142857.075.012001 =
⋅++⋅+⋅+⋅

−⋅++−⋅+−⋅+−⋅=
�

�
TW  

Step 6. Determine the 0.05 level critical point from Table 10-1 in Appendix D as the upper 95th 
percentage point from a standard normal distribution. This gives zcp = 1.645. 

Step 7. Compare the Tarone-Ware statistic against the critical point. Since TW = 1.85 > 1.645 = zcp, 
conclude that the PCE concentrations are significantly greater at the compliance well than in 
background at the 5% significance level. � 
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This chapter describes two statistical procedures — analysis of variance [ANOVA] and tolerance 
limits — explicitly allowed within §264.97(h) and §258.53(g) for use in groundwater monitoring. The 
Unified Guidance does not generally recommend either technique for formally making regulatory 
decisions about compliance wells or regulated units, instead focusing on prediction limits, control charts, 
and confidence intervals.  But both ANOVA and tolerance tests are standard statistical procedures that 
can be adapted for a variety of uses.  ANOVA is particularly helpful in both identifying on-site spatial 
variation and in sometimes aiding the computation of more effective and statistically powerful intrawell 
prediction limits (see Chapters 6 and 13 for further discussion). 

This chapter also presents selected trend tests as an alternative statistical method that can be quite 
useful in groundwater detection monitoring, particularly when groundwater populations are not 
stationary over time. Although trend tests are not explicitly listed within the RCRA regulations, they 
possess advantages in certain situations and can meet the performance requirements of §264.97(i) and 
§258.53(h). They can also be helpful during diagnostic evaluation and establishment of historical 
background (Chapter 5) and in verifying key statistical assumptions (Chapter 14). 
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The parametric one-way ANOVA is a statistical procedure to determine whether there are 
statistically significant differences in mean concentrations among a set of wells. In groundwater 
applications, the question of interest is whether there is potential contamination at one or more 
compliance wells when compared to background. By finding a significant difference in means and 
specifically higher average concentrations at one or more compliance wells, ANOVA results can 
sometimes be used to identify unacceptably high contaminant levels in the absence of natural spatial 
variability. 

Like the two-sample t-test, the one-way ANOVA is a comparison of population means. However, 
the one-way parametric ANOVA is a comparison of several populations, not just two: one set of 
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background data versus at least two compliance wells. The F-statistic that forms the heart of the 
ANOVA procedure is actually an extension of the t-statistic; an F-statistic formed in a comparison of 
only two datasets reduces to the square of the usual pooled variance Student’s t-statistic. Like the t-
statistic, the F-statistic is a ratio of two quantities.   The numerator is a measure of the average squared 
difference observed between the pairs of sample means, while the denominator represents the average 
variability found in each well group. 

Under the null hypothesis that all the wells or groups have the same population mean, the F-
statistic follows the F-distribution. Unlike the t-distribution with a single degrees of freedom df, there 
are two df quantities associated with F.  One is for the numerator and the other for the denominator. 
When critical points are needed from the F-distribution, one must specify both degrees of freedom 
values. 

Computation of the F-statistic is only the first step of the full ANOVA procedure, when used as a 
formal compliance test. It can only determine whether any significant mean difference exists between the 
possible pairs of wells or data groups, and not whether or what specific compliance wells differ from 
background. To accomplish this latter task when a significant F-test is registered, individual tests 
between each compliance well and background needs to be conducted, known as individual post-hoc 
comparisons or contrasts. These individual tests are a specially constructed series of t-tests, with critical 
points chosen to limit the test-wise or experiment-wise false positive rate. 

� ��&%����������������%��������

The parametric ANOVA assumes that the data groups are normally-distributed with constant 
variance. This means that the group residuals should be tested for normality (Chapter 10) and that the 
groups have to be tested for equality of variance, perhaps with Levene’s test (Chapter 11). Since the F-
test used in the one-way ANOVA is reasonably robust to small departures from normality, the first of 
these assumptions turns out to be less critical than the second. Research (Milliken and Johnson, 1984) 
has shown that the statistical power of the F-test is strongly affected by inequality in the population 
variances. A noticeable drop in power is seen whenever the ratio of the largest to smallest group variance 
is at least 4. A severe drop in power is found whenever the ratio of the largest to smallest group variance 
is at least a factor of 10. These ratios imply that the F-test will lose some statistical power if any of the 
group population standard deviations is at least twice the size of any other group’s standard deviation, 
and that the power will be greatly curtailed if any standard deviation is at least 3 times as large as any 
other group’s. 

If the hypothesis of equal variances is rejected or if the group residuals are found to violate an 
assumption of normality (especially at the .01 significance level or less), one should consider a 
transformation of the data, followed by testing of the ANOVA assumptions on the transformed scale. If 
the residuals from the transformed data still do not satisfy normality or if there are too many non-detect 
measurements to adequately test the assumptions, a non-parametric ANOVA (called the Kruskal-Wallis 
test) using the ranks of the observations is recommended instead (see Section 17.1.2). 

Since ANOVA is inherently an interwell statistical method, a critical point in using ANOVA for 
compliance testing is that the well field should exhibit minimal spatial variability.  Interwell tests also 
require the groundwater well populations to be spatially stationary, so that absent a release the 
population well means are stable over time. Because spatial variation is frequently observed in many 
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groundwater constituents, especially for common inorganic constituents and some metals, ANOVA may 
not be usable as compliance testing tool.  Yet it can be utilized on the same data sets to help identify the 
presence of spatial variability.  In this capacity, the same procedure and formulas are utilized as 
described below (with the exception of the post-hoc contrasts, which are unnecessary for assessing 
spatial variation).  The results are then employed to guide the appropriate choice of a compliance test 
(e.g., intrawell or interwell prediction limits). 

For formal ANOVA testing under §264.97(i) and §258.53(h), the experiment-wise or test-wise 
false positive rate (�) needs to be at least 5% during any statistical evaluation for each constituent tested. 
Furthermore, the individual post-hoc contrasts used to test single compliance wells against background 
need to be run at a significance level of at least �* = 1% per well. Combined, these regulatory constraints 
imply that if there are more than five post-hoc contrasts that need to be tested (i.e., more than 5 
compliance wells are included in the ANOVA test), the overall, maximal false positive rate of the 
procedure will tend to be greater, and perhaps substantially so, than 5%. Also, since � = 5% is the 
minimum significance level per monitoring constituent, running multiple ANOVA procedures to 
accommodate a list of constituents will lead to a minimum site-wide false positive rate [SWFPR] greater 
than the Unified Guidance recommended target of 10% per statistical evaluation.  

In addition, if a contaminated compliance well exists but too many uncontaminated wells are also 
included in the same ANOVA, the F-statistic may result in a non-significant outcome. Performing 
ANOVA with more than 10 to 15 well groups can “swamp” the procedure, causing it to lose substantial 
power. It therefore will be necessary to consider one of the retesting strategies described in Chapters 18 
and 20 as an alternative to ANOVA in the event that either the expected false positive rate is too large, 
or if more than a small number of wells need to be tested. 

Another drawback to the one-way ANOVA is that the F-test accounts for all possible paired 
comparisons among the well groups. In some cases, the F-statistic may be significant even though all of 
the contrasts between compliance wells and background are non-significant. This does not mean that the 
F-test has necessarily registered a false positive. Rather, it may be that two of the compliance wells 
significantly differ from each other, but neither differs from background. This could happen, for 
instance, if a compliance well has a lower mean concentration than background while other compliance 
wells have near background means. The F-test looks for all possible differences between pairs of well 
groups, not just those comparisons against background. 

In order to run a valid one-way F-test, a minimum number of observations are needed. Denoting 
the number of data groups by p, at least p > 2 groups must be compared (e.g., two or more compliance 
wells versus background). Each group should have at least three to four statistically independent 
observations and the total sample size, N, should be large enough so that N–p > 5. As long as p � 3 and 
there are at least 3 observations per well, this last requirement will always be met. But the statistical 
power of an ANOVA to identify differences in population means tends to be minimal unless there are at 
least 4 or more observations per data group. It is also helpful to have at least 8 measurements in 
background for the test. 

Similarly to the two-sample t-test, it may be very difficult to verify that the measurements are 
statistically independent with only a handful of observations per well.  One should additionally ensure 
that the samples are collected far enough apart in time to avoid significant autocorrelation (see Chapter 
14 for further discussion). A periodic check of statistical independence in each may be possible after a 
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few testing periods, when enough data has been collected to enable a statistical assessment of this 
assumption. 

�����%���

Step 1. Combine all the relevant background data collected from multiple wells into one group.  These 
wells should have insignificant mean differences under prior ANOVA testing. If the regulated 
unit has (p–1) compliance wells, there will then be a total of p data groups. Because there may 
be different numbers of observations per well, denote the sample size of the ith group by ni 
and the total number of data points across all groups by N. 

Step 2. Denote the observations in the ith well group by xij for i = 1 to p and j = 1 to ni. The first 
subscript designates the well, while the second denotes the jth value in the ith well. Then 
compute the mean of each well group along with the overall (grand) mean of the combined 
dataset using the following formulas: 

 
  
xi• =

1
ni

xij
j=1

ni

�  [17.1] 

 
  
x•• =

1
N

xij
j=1

ni

�
i=1

p

�  [17.2] 

Step 3. Compute the sum of squares of differences between the well group means and the grand mean, 
denoted SSwells: 

 
  
SSwells = ni xi• − x••( )2

i=1

p

� = nixi•
2

i=1

p

� − Nx••
2  [17.3] 

 The formula on the far right is usually the most convenient for calculation. This sum of 
squares has (p–1) degrees of freedom associated with it and is a measure of the variability 
between wells. It constitutes the numerator of the F-statistic. 

Step 4. Compute the corrected total sum of squares, denoted by SStotal: 

 
  
SStotal = xij − x••( )2

j=1

ni

�
i=1

p

� = xij
2

j=1

ni

�
i=1

p

� − Nx••
2  [17.4] 

  The far right equation is convenient for calculation. This sum of squares has (N–1) degrees of 
freedom associated with it and is a measure of the variability in the entire dataset. In fact, if 
SStotal is divided by (N–1), one gets the overall sample variance. 

Step 5. Compute the sum of squares of differences between the observations and the well group 
means. This is known as the within-wells component of the total sum of squares or, 
equivalently, as the sum of squares due to error. It is easiest to obtain by subtraction using the 
far right side of equation [17.5] and is denoted SSerror: 
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SSerror = xij − xi•( )2

j=1

ni

�
i=1

p

� = SStotal − SSwells  [17.5] 

 SSerror is associated with (N–p) degrees of freedom and is a measure of the variability within 
well groups. This quantity goes into the denominator of the F-statistic. 

Step 6. Compute the mean sum of squares for both the between-wells and within-wells components of 
the total sum of squares, denoted by MSwells and MSerror. These quantities are simply obtained 
by dividing each sum of squares by its corresponding degrees of freedom: 

 
  
MSwells = SSwells p − 1( ) [17.6] 

 
 
MSerror = SSerror N − p( ) [17.7] 

Step 7. Compute the F-statistic by forming the ratio between the mean sum of squares for wells and 
the mean sum of squares due to error, as in Figure 17-1. This layout is known as a one-way 
parametric ANOVA table and illustrates the sum of squares contribution to the total 
variability, along with the corresponding degrees of freedom, the mean squares components, 
and the final F-statistic calculated as F = MSwells/MSerror. Note that the first two rows of the 
one-way table sum to the last row. 
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Step 8. To test the hypothesis of equal means for all p wells, compare the F-statistic in Figure 17-1 to 
the α-level critical point found from the F-distribution with (p–1) and (N–p) degrees of 
freedom in Table 17-1 of Appendix D.   α is usually set at 5%, so that the needed comparison 
value equals the upper 95th percentage point of the F-distribution.  The numerator (p-1) and 
denominator (N-p) degrees of freedom for the F-statistic are obtained from the above table.  If 
the observed F-statistic exceeds the critical point (F.95, p–1, N–p), reject the hypothesis of equal 
well group population means. Otherwise, conclude that there is insufficient evidence of a 
significant difference between the concentrations at the p well groups and thus no evidence of 
potential contamination in any of the compliance wells.  

Step 9. In the case of a significant F-statistic that exceeds the critical point in Step 8, determine which 
compliance wells have elevated concentrations compared to background. This is done by 
comparing each compliance well individually against the background measurements. Tests to 
assess concentration differences between a pair of well groups are called contrasts in a  
multiple comparisons ANOVA framework. Since the contrasts are a series of individual 
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statistical tests, each run at a fixed significance level α*, the Type I error accumulates across 
the tests as the number of contrasts increases. 

 To keep the overall false positive rate close to the targeted rate of 5%, the individual contrasts 
should be set up as follows: Given (p–1) separate background-compliance contrasts, if (p–1) � 
5, run each contrast at a significance level equal to α* = .05/(p–1). However, if (p–1) > 5, run 
each contrast at a significance level equal to α* = .01. Note that when there are more than 5 
compliance wells, this last provision will tend to raise the overall false positive rate above 5%. 

Step 10. Denote the background data set as the first well group, so that the number of background 
samples is equal to nb. Then for each of the remaining (p–1) well groups, compute the standard 
error of the difference between each compliance well and background: 

 ��
�

�
��
�

�
+⋅=

ib
errori nn

MSSE
11

 [17.8] 

 Note that MSerror is taken from the one-way ANOVA table in Figure 17-1. The standard error 
here is an extension of the standard error of the difference involving the pooled variance in the 
Student’s t-test of Chapter 16. 

Step 11. Treat the background data as the first well group with the average background concentration 
equal to bx . Compute the Bonferroni t-statistic for each of the (p–1) compliance wells from i = 
2 to p, dividing the standard error in Step 10 into the difference between the average 
concentration at the compliance well and the background average, as shown below: 

 ( ) ibii SExxt −=  [17.9] 

Step 12. The Bonferroni t-statistic in equation [17.9] is a type of t-test. Since the estimate of variability 
used in equation [17.8] has (N–p) degrees of freedom, the critical point can be determined 
from the Student’s t-distribution in Table 16-1 of Appendix D.  Let the Bonferroni critical 
point (tcp) be equal to the upper (1–α*) × 100th percentage point of the t-distribution with (N–
p) degrees of freedom. 

Step 13. If any of the Bonferroni t-statistics (ti) exceed the critical point tcp, conclude that these 
compliance wells have population mean concentrations significantly greater than background 
and thus exhibit evidence of possible contamination. Compliance wells for which the 
Bonferroni t-statistic does not exceed tcp should be regarded as similar to background in mean 
concentration level. 

� ��@�����������

Lead concentrations in ground water at two background and four compliance wells were tested for 
normality and homoscedasticity.   These data were found to be best fit by a lognormal distribution with 
approximately equal variances.  The two background wells also indicated insignificant log mean 
differences. The natural logarithms of these lead values are shown in the table below. Use the one-way 
parametric ANOVA to determine whether there are any significant concentration increases over 
background in any of the compliance wells. 
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Step 1. Combine the two background wells into one group, so that the background average becomes 
3.89 log(ppb). Then nb = 8, while ni = 4 for each of the other four well groups. Note that the 
total sample size is N = 24 and p = 5. 

Step 2. Compute the (overall) grand mean and the sample mean concentrations in each of the well 
groups using equations [17.1] and [17.2]. These values are listed (along with each group’s 
standard deviation) in the above table. 

Step 3. Compute the sum of squares due to well-to-well differences using equation [17.3]: 

 ( ) ( ) ( )[ ] ( ) 289.435.42400.5435.4489.38 2222 =⋅−⋅++⋅+⋅= �wellsSS  

 This quantity has (5–1) = 4 degrees of freedom. 

Step 4. Compute the corrected total sum of squares using equation [17.4] with (N–1) = 23 df: 

 ( ) ( )[ ] ( ) 934.835.42408.506.4 222 =⋅−++= �totalSS  

Step 5. Obtain the within-well or error sum of squares by subtraction using equation [17.5]: 

   SSerror = 8.934 − 4.289 = 4.646  

 This quantity has (N–p) = 24–5 = 19 degrees of freedom. 

Step 6. Compute the mean sums of squares using equations [17.6] and [17.7]: 

   MSwells = 4.289 4 = 1.072  

   MSerror = 4.646 19 = 0.245  
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Step 7. Construct the F-statistic and the one-way ANOVA table, using Figure 17-1 in Appendix D as 
a guide: 
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Step 8. Compare the observed F-statistic of 4.39 against the critical point taken as the upper 95th 
percentage point from the F-distribution with 4 and 19 degrees of freedom. Using Table 17-1, 
this gives a value of F.95,4,19 = 2.90. Since the F-statistic exceeds the critical point, the 
hypothesis of equal well means is rejected, and post-hoc Bonferroni t-test comparisons should 
be conducted. 

Step 9. Determine the number of individual contrasts needed. With four compliance wells, (p–1) = 4 
comparisons need to be made against background. Therefore, run each Bonferroni t-test at the 
α* = .05/4 = .0125 level of significance. 

Step 10. Compute the standard error of the difference between each compliance well average and the 
background mean using equation [17.8]. Since the number of observations is the same in each 
compliance well, the standard error in all four cases will be equal to: 

 
  
SEi = 0.245

1
8

+
1
4

�

��
�

��
= 0.303  

Step 11. Compute the Bonferroni t-statistic for each compliance well using equation [17.9]: 

 

  

Well 3: t2 = 4.35 − 3.89( ) 0.303 = 1.52

Well 4: t3 = 4.19 − 3.89( ) 0.303 = 0.99

Well 5: t4 = 4.80 − 3.89( ) 0.303 = 3.00

Well 6: t5 = 5.00 − 3.89( ) 0.303 = 3.66

 

 Note that because Wells 1 and 2 jointly constitute background, the subscripts above 
correspond to the well groups and not the actual well numbers. Thus, subscript 2 in the 
Bonferroni t-statistic corresponds to Well 3, subscript 3 corresponds to Well 4, and so forth. 

Step 12. Look up the critical point from the t-distribution in Table 16-1 of Appendix D using a 
significance level of α* = .0125 and (N–p) = 19 df. This gives tcp = 2.433. 

Step 13. Compare each Bonferroni t-statistic from Step 11 against the critical point from Step 12. 
Because the t-statistics at compliance wells 5 and 6 both exceed 2.433, while those at wells 3 
and 4 do not, conclude that the population averages in compliance wells 5 and 6 are 
significantly higher than background. � 
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The parametric one-way ANOVA makes a key assumption that the data residuals are normally-
distributed. If this assumption is inappropriate or cannot be tested because of a large fraction of non-
detects, a non-parametric ANOVA can be conducted using the ranks of the observations rather than the 
original observations. In Chapter 16, the Wilcoxon rank-sum test is presented as a non-parametric 
alternative to the Student’s t-test when comparing two groups.  The Kruskal-Wallis test is offered as a 
non-parametric alternative to the one-way F-test when several groups need to be simultaneously 
compared, for instance when assessing patterns of spatial variability.  Instead of a test of means, the 
Kruskal-Wallis tests differences among average population ranks equivalent to the medians. 

The Kruskal-Wallis test statistic, H, does not have the intuitive form of the Student’s t-test. Under 
the null hypothesis that all the sample measurements come from identical parent populations, the 
Kruskal-Wallis statistic follows the well-known chi-square statistical distribution.  Critical points for the 
Kruskal-Wallis test can be found as upper percentage points of the chi-square ( 2

,1 dfαχ − ) distribution in 

Table 17-2  of Appendix D. 

If H indicates a significant difference between the populations, individual post-hoc comparisons 
between each compliance well and background need to be conducted if the Kruskal-Wallis is being used 
for formal compliance testing.  Post-hoc contrasts are not generally necessary for identifying spatial 
variability. Rather than Bonferroni t-statistics, contrasts are based on the data ranks and approximately 
follow a standard normal distribution. The critical points for these contrasts can be obtained from the 
standard normal distribution in Table 10-1 of Appendix D. 

� ��&%����������������%��������

While the Kruskal-Wallis test does not require the underlying populations to be normally-
distributed, statistical independence of the data is still assumed. Under the null hypothesis of no 
difference among the groups, the observations are assumed to arise from identical distributions with 
equal population variances (Hollander and Wolfe, 1999).  However, the form of the distribution need not 
be specified. 

A non-parametric ANOVA can be used in any situation that the parametric ANOVA can be used. 
The minimum data requirements are similar: the sample size for each group in the Kruskal-Wallis 
procedure should generally be at least four to five observations per group. Despite this similarity, it is 
often true that non-parametric tests require larger sample sizes than their parametric test counterparts to 
ensure a similar level of statistical power or efficiency. Non-parametric tests make fewer assumptions 
concerning the underlying data distribution and so more observations are often needed to make the same 
judgment that would be rendered by a parametric test.  However, the greater efficiency of parametric 
tests is only achieved when the parent population follows certain known statistical distributions. When 
the distribution is unknown, non-parametric tests may have much greater power than their parametric 
counterparts. 
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Even when a known statistical distribution is considered, rank-based non-parametric tests like the 
Wilcoxon rank-sum and Kruskal-Wallis often perform reasonably well compared to the t-test and 
ANOVA. The relative efficiency of two procedures is defined as the ratio of the sample sizes needed by 
each to achieve a certain level of power against a specified alternative hypothesis. As sample sizes get 
larger, the efficiency of the Kruskal-Wallis test relative to the parametric ANOVA approaches a limit 
that depends on the underlying distribution of the data, but is always at least 86 percent. This means 
roughly that, in the worst case, if 86 measurements are available for a parametric ANOVA, only 100 
sample values are needed to have an equivalently powerful Kruskal-Wallis test. In many cases, the 
increase in sample size necessary to match the power of a parametric ANOVA is much smaller or not 
needed at all. The efficiency of the Kruskal-Wallis test is 95% if the underlying data are really normal, 
and can be much larger than 100% in other cases (e.g., it is 150% if the data residuals follow a 
distribution called the double exponential). When the efficiency exceeds 100%, the Kruskal-Wallis 
actually needs fewer observations than the parametric ANOVA to achieve a certain power. 

These results imply that the Kruskal-Wallis test is reasonably powerful for detecting concentration 
differences despite the fact that the original data have been replaced by their ranks. The test can be used 
with fair success even when the data are normally-distributed and the Kruskal-Wallis is not needed. 
When the data are not normal or a normalizing transformation cannot be found, the Kruskal-Wallis 
procedure tends to be more powerful for detecting differences than the usual parametric approach. 

� ��C%����$�����������"�����������

The Kruskal-Wallis procedure will frequently be used when the sample data contain a significant 
fraction of non-detects.  However, the presence of non-detects prevents a unique and complete ranking 
of the concentration values since the exact values of non-detects are unknown. 

To address this problem, two steps are necessary.  Since they cannot be uniquely ranked, all non-
detects are to be treated statistically as ‘tied’ values. This is an imperfect remedy, since non-detects 
represent left-censored values and are not necessarily tied. Unfortunately, there is no straightforward, 
easily implemented alternative to the Kruskal-Wallis for comparing three or more groups containing left-
censored observations, unlike the Tarone-Ware alternative to the Wilcoxon rank-sum test discussed in 
Chapter 16. So in the presence of ties (e.g., non-detects or quantified concentrations rounded to the 
same value), all tied observations should receive the same midrank (discussed in Section 16.3). This 
rank is computed as the average of the ranks that would be given to each group of ties if the tied values 
actually differed by a tiny amount and could be ranked. 

To account for multiple reporting limits, all non-detects should be treated as if censored at the 
highest reporting limit [RL] in the overall sample. Thus, a non-detect reported as <5 would be treated as 
‘tied’ with a non-detect reported as <1, due to the impossibility of knowing which value is actually 
larger. The only exception to this strategy is when laboratory qualifiers can be used to rank some non-
detects as probably greater in magnitude than others. A reasonable strategy discussed in Section 16.3 is 
to group all “U” values as the lowest set of ties, other non-detects as a higher set of ties, and to rank all 
“J” and/or “E” values according to their estimated concentrations. In situations where estimated values 
for J and E samples are not provided, treat these measurements as the highest group of tied non-detects. 
Always give the highest ranks to explicitly quantified or estimated concentration measurements. 
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The second step for handling ties is to compute the Kruskal-Wallis statistic as described below, 
using for each tied value its corresponding midrank. Then an adjustment to the Kruskal-Wallis statistic 
needs to be made to account for the presence of ties. This adjustment requires computation of the 
formula: 

 
  
H * = H 1−

ti
3 − ti

N 3 − Ni=1

g

�
�

�
�

�

�
�

�

	





�

�



 [17.10] 

where g equals the number of distinct groups of tied observations, N is the total sample size across all 
groups, and ti is the number of observations in the ith tied group. Unless there are a substantial number 
of ties in the overall dataset, the adjustment in equation [17.10] will tend to be small. Still, it is important 
to properly account for the presence of tied values. 

� �����%���

Step 1. To run the Kruskal-Wallis test, denote the total sample size across all well groups by N. 
Temporarily combine all the data into one group and rank the observations from smallest to 
largest. Treat all non-detects as tied at the lowest possible concentration value, unless using 
lab qualifiers to distinguish between ‘undetected’ and other non-detects. Combine all 
background wells into a single group where appropriate. Denote this set of background data as 
group 1. Then let Rij denote the jth rank from the ith well group, and let k equal the total 
number of groups (i.e., one group of background values and (k–1) groups of compliance 
wells). 

Step 2. Compute the sum of the ranks and the average rank in each well group, letting ni equal the 
sample size in the ith group and using the following formulas: 

 
  
Ri• = Rij

j=1

ni

�  [17.11] 

 
  
Ri• =

1
ni

Ri•  [17.12] 

Step 3. Calculate the Kruskal-Wallis test statistic H and the adjustment for ties, if necessary, using 
equation [17.10], where H is given by: 

 

  

H =
12

N N + 1( )
Ri•

nii=1

k

�
�

	





�

�



− 3 N + 1( ) [17.13] 

Step 4. Given the level of significance (α), determine the Kruskal-Wallis critical point ( 2
pcχ ) as the 

upper (1–α) × 100th percentage point from the chi-square distribution with (k–1) degrees of 
freedom (Table 17-2 in Appendix D). Usually α is set equal to 0.05, so that the upper 95th 
percentage point of the chi-square distribution is needed. 
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Step 5. Compare the Kruskal-Wallis test statistic, H, against the critical point 2
pcχ . If H is no greater 

than the critical point, conclude there is insufficient evidence of significant differences 
between any of the well group populations. If H > 2

pcχ , however, conclude there is a significant 

difference between at least one pair of the well groups. Post-hoc comparisons are then 
necessary to determine whether any of the compliance wells significantly exceeds background 
(note that post-hoc comparisons are not necessary if using the Kruskal-Wallis test to merely 
identify spatial variability). 

Step 6. In the case of a significant H-statistic that exceeds the critical point in Step 5, determine which 
compliance wells have elevated concentrations compared to background. This is done by 
comparing each compliance well against background, using a set of contrasts (as described for 
the parametric one-way ANOVA in Section 17.1.1). 

 To keep the test-wise or experiment-wise false positive rate close to the targeted (i.e., 
nominal) rate of 5%, the individual contrasts should be set up as follows: Given (k–1) separate 
background-compliance contrasts, if (k–1) � 5, run each contrast at a significance level equal 
to α* = .05/(k–1). However, if (k–1) > 5, run each contrast at a significance level equal to α* = 
.01. Note that when there are more than 5 downgradient wells, this last provision will tend to 
raise the overall false positive rate above 5%. 

Step 7. Since the background data is the first well group, the number of background observations is 
equal to n1. For each of the remaining (k–1) well groups, compute the approximate rank-based 
standard error of the difference between each compliance well and background using equation 
[17.14]: 

 
  
SEi =

N N + 1( )
12

1
n1

+
1
ni

�

�
�

�

�
�  [17.14] 

Step 8. Let the average background rank be identified as bR . Compute the post-hoc Z-statistic for each 
of the (k–1) compliance wells for i = 2 to k, dividing the standard error in step 7 into the 
difference between the average rank at the compliance well and the background rank average, 
as shown below: 

 ( ) ibii SERRZ −=  [17.15] 

Step 9. The Z-statistic in equation [17.15] has an approximate standard normal distribution under the 
null hypothesis that the ith compliance well is identical in distribution to background.  The 
critical point (zcp) can be found as the upper (1–α) × 100th percentage point of the normal 
distribution in Table 10-1 of Appendix D. 

Step 10. Compare the post-hoc Z-statistics for each of the (k–1) compliance wells against the critical 
point (zcp). Any Z-statistic that exceeds the critical point provides significant evidence of an 
elevation over background in that compliance well at the α level of significance. 

� �
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Use the non-parametric Kruskal-Wallis test on the following data to determine whether there is 
evidence of possible toluene contamination at a significance level of � = 0.05. 
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Step 1. Since non-detects account for 48% of these data, it would be very difficult to verify the 
assumptions of normality and equal variance necessary for a parametric ANOVA. Use the 
Kruskal-Wallis test instead, pooling both background wells into one group and treating each 
compliance well as a separate group. Note that N = 25 and k = 4. 

 Compute ranks for all the data including tied observations (e.g., non-detects) as in the 
following table. Note that each non-detect is given the same midrank, equal to the average of 
the first 12 unique ranks. 
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Step 2. Calculate the sum and average of the ranks in each group using equations [17.11] and [17.12]. 
These results are given in the above table. 

Step 3. Compute the Kruskal-Wallis statistic H using equation [17.13]: 

 

  

H =
12

25 ⋅ 26
79
10

2

+
61
5

2

+
88.5

5

2

+
96.5

5

2�
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− 3 ⋅ 26( )= 10.56  
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 Also compute the adjustment for ties with equation [17.10]. There is only one group of distinct 
tied observations — the non-detects — containing 12 samples. Thus, the adjusted Kruskal-
Wallis statistic is given by: 

 
  
H * = 10.56 1− 123 − 12

253 − 25
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= 11.87  

Step 4. Determine the critical point of the Kruskal-Wallis test: with α = .05, the upper 95th percentage 
point of the chi-square distribution with (k–1) = 4–1 = 3 degrees of freedom [df] is needed. 
Table 17-2 of Appendix D gives 81.72

3,95.
2 == χχ pc . 

Step 5. Since the observed Kruskal-Wallis statistic of 11.87 is greater than the chi-square critical 
point, there is evidence of significant differences between the well groups. Therefore, post-hoc 
pairwise comparisons are necessary. 

Step 6. To determine the significance level appropriate for post-hoc comparisons, note there are three 
compliance wells that need to be tested against background. Therefore, each of these contrasts 
should be run at the α* = 0.05/3 = 0.0167 significance level. 

Step 7. Calculate the standard error of the difference for the three contrasts using equation [17.14]. 
Since the sample size at each compliance well is five, the SE will be identical for each 
comparison, namely, 

 
  
SEi =

25 ⋅ 26
12

1
10

+
1
5

�

��
�

��
= 4.031 

Step 8. Form the post-hoc Z-statistic for each contrast using equation [17.15]: 

 

  

Well 3: Z2 = 12.2 − 7.9( ) 4.031 = 1.07

Well 4: Z3 = 17.7 − 7.9( ) 4.031 = 2.43

Well 5: Z4 = 19.3− 7.9( ) 4.031 = 2.83

 

Step 9. Find the upper (1–α*) × 100th percentage point from the standard normal distribution in 
Table 10-1 in Appendix D. With α* = .0167, this gives a critical point (by linear 
interpolation) of zcp = z.9833 = 2.127. 

Step 10. Since the Z-statistics at wells 4 and 5 exceed the critical point, there is significant evidence of 
increased concentration levels at wells 4 and 5, but not at well 3. � 
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A tolerance interval is a concentration range designed to contain a pre-specified proportion of the 
underlying population from which the statistical sample is drawn (e.g., 95 percent of all possible 
population measurements). Since the interval is constructed from random sample data, a tolerance 
interval is expected to contain the specified population proportion only with a certain level of statistical 
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confidence. Two coefficients are thus associated with any tolerance interval. One is the population 
proportion that the interval is supposed to contain, called the coverage (γ). The second is the degree of 
confidence with which the interval reaches the specified coverage. This is sometimes known as the 
tolerance coefficient or more simply, the confidence level (1–α). A tolerance interval with 95% coverage 
and a tolerance coefficient of 90 percent is constructed to contain, on average, 95% of the distribution of 
all possible population measurements with a confidence probability of 90%. 

A tolerance limit is a one-sided tolerance interval. The upper limit is typically of most interest in 
groundwater monitoring. Tolerance limits are a standard statistical method that can be useful in 
groundwater data analysis, especially as an alternative to t-tests or ANOVA for interwell testing.  The 
RCRA regulations allow greater flexibility in the choice of � when using tolerance and prediction limits 
and control charts, so a larger variety of data configurations may be amenable to one of these 
approaches. The Unified Guidance still recommends prediction limits or control charts over tolerance 
limits for formal compliance testing in detection monitoring, and confidence intervals over tolerance 
limits in compliance/assessment monitoring when a background standard is needed. 

An interwell tolerance limit constructed on background data is designed to cover all but a small 
percentage of the background population measurements.  Hence background observations should rarely 
exceed the upper tolerance limit. By the same token, when testing a null hypothesis (H0) that the 
compliance point population is identical to background, compliance point measurements also should 
rarely exceed the upper tolerance limit, unless H0 is false. The upper tolerance limit thus gauges whether 
or not concentration measurements sampled from compliance point wells are too extreme relative to 
background. 
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To test the null hypothesis (H0) that a compliance point population is identical to that of 
background, an upper tolerance limit with high coverage (�) can be constructed on the sample 
background data. Coverage of 95% is usually recommended.  In this case, random observations from a 
distribution identical to background should exceed the upper tolerance limit less than 5% of the time. 
Similarly, a tolerance coefficient or confidence level of at least 95% is recommended. This gives 95% 
confidence that the (upper) tolerance limit will contain at least 95% of the distribution of observations in 
background or in any distribution similar to background. Note that a tolerance coefficient of 95% 
corresponds to choosing a significance level (α) equal to 5%. Hence, as with a one-way ANOVA, the 
overall false positive rate for a tolerance interval is set to approximately 5%. 

Once the limit is constructed on background, each compliance point observation (perhaps from  
several different wells) is compared to the upper tolerance limit. This is different from the comparison of 
sample means in an ANOVA test. If any compliance point measurement exceeds the limit, the well from 
which it was drawn is flagged as showing a significant increase over background. Note that the factors κ 
used to adjust the width of the tolerance interval (Table 17-3 in Appendix D) are designed to provide at 
least 95% coverage of the parent population. Applied over many data sets, the average coverage of these 
intervals will often be close to 98% or more (see Guttman, 1970). Therefore, it would be unusual to find 
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more than 2 or 3 samples out of every 100 exceeding the tolerance limit under the null hypothesis. This 
fits with the purpose behind the use of a tolerance interval, which is to establish an upper limit on 
background that will rarely be exceeded, unless some change in the groundwater causes concentration 
levels to rise significantly at one or more compliance points. 

 Testing a large number of compliance point samples against such a background tolerance limit 
even under conditions of no releases practically ensures a few measurements will occasionally exceed 
the limit. The Unified Guidance therefore recommends that tolerance limits be used in conjunction with 
verification resampling of those wells suspected of possible contamination, in order to either verify or 
disconfirm the initial round of sampling and to avoid false positive results. 

� ��&%����������������%��������

Standard parametric tolerance limits assume normality of the sample background data used to 
construct the limit. This assumption is critical to the statistical validity of the method, since a tolerance 
limit with high coverage can be viewed as an estimate of a quantile or percentile associated with the tail 
probability of the underlying distribution. If the background sample is non-normal, a normalizing 
transformation should be sought. If a suitable transformation is found, the limit should be constructed on 
the transformed measurements and can then be back-transformed to the raw concentration scale prior to 
comparison against individual compliance point values. 

If no transformation will work, a non-parametric tolerance limit should be considered instead. 
Unfortunately, non-parametric tolerance limits generally require a much larger number of observations  
to provide the same levels of coverage and confidence as a parametric limit.  It is recommended that a 
parametric model be fit to the data if at all possible. 

A tolerance limit can be computed with as few as three observations from background.  However, 
doing so results in a high upper tolerance limit with limited statistical power for detecting increases over 
background. Usually, a background sample size of at least eight measurements will be needed to 
generate an adequate tolerance limit. If multiple background wells are screened in equivalent 
hydrostratigraphic positions and the data can reasonably be combined (Chapter 5), one should consider 
using pooled background data from multiple wells to increase the background sample size. 

Like many tests described in the Unified Guidance, tolerance limits as applied to groundwater 
monitoring assume stationarity of the well field populations both temporally (i.e., over time) and 
spatially. The data also needs to be statistically independent. Since an adequately-sized background 
sample will have to be amassed over time (in part to maintain enough temporal spacing between 
observations so that independence can be assumed), the background data should be checked for apparent 
trends or seasonal effects. As long the background mean is stable over time, the amassed data from a 
longer span of sampling will provide a better statistical description of the underlying background 
population. 

As a primarily interwell technique, tolerance limits should only be utilized when there is minimal  
spatial variability. Explicit checks for spatial variation should be conducted using box plots and/or 
ANOVA. 

In the usual test setting, one new compliance point observation from each distinct well is compared 
against the tolerance limit during each statistical evaluation. Under the null hypothesis of identical 
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populations, the compliance point measurements are assumed to follow the same distribution as 
background. Further, the compliance data are assumed to be mutually statistically independent. Such 
assumptions are almost impossible to check with only one new value per compliance well. However, 
periodic checks of the key assumptions are recommended after accumulating several sampling rounds of 
compliance data. 
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Step 1. Calculate the mean  x ,  and the standard deviation s, from the background sample. 

Step 2. Construct the one-sided upper tolerance limit as 

 
  
TL = x +κ n,γ ,1− α( )⋅ s  [17.16] 

 where κ(n,γ,1−α) is the one-sided normal tolerance factor found in Table 17-3 of Appendix D 
associated with a sample size of n, coverage coefficient of γ, and confidence level of (1−α). 

 Equation [17.16] applies to normal data. If a transformation is needed to normalize the sample, 
the tolerance limit needs to be constructed on the transformed measurements and the limit 
back-transformed to the original concentration scale. If the limit was constructed, for example, 
on the logarithms of the original observations, where  y  and sy are the log-mean and log-
standard deviation, the tolerance limit can be back-transformed to the concentration scale by 
exponentiating the limit.  The tolerance limit is computed as: 

 ( )[ ]ysnyTL ⋅−+= αγκ 1,,exp  [17.17] 

Step 3. Compare each observation from the compliance well(s) to the upper tolerance limit found in 
Step 2. If any observation exceeds the tolerance limit, there is statistically significant evidence 
that the compliance well concentrations are elevated above background. Verification 
resampling should be conducted to verify or disconfirm the initial result. 

� ��@���������'�

The table below consists of chrysene concentration data (ppb) found in water samples obtained 
from two background wells (Wells 1 and 2) and three compliance wells (Wells 3, 4, and 5). Compute the 
upper tolerance limit on background for coverage of 95% with 95% confidence and determine whether 
there is evidence of possible contamination at any of the compliance wells. 
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Step 1. A Shapiro-Wilk test of normality on the pooled set of eight background measurements gives 
W = 0.7978 on the original scale and W = 0.9560 after log-transforming the data, suggesting 
that the data are better fit by a lognormal distribution. Therefore, construct the tolerance limit 
on the logged observations, listed below along with the log-means and log-standard 
deviations. 
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Step 2. Compute the upper tolerance limit on the pooled background data using the logged chrysene 
concentration data. The tolerance factor for a one-sided upper normal tolerance limit with 95% 
coverage and 95% probability and n = 8 observations is equal to (from Table 17-3 of 
Appendix D) κ = 3.187. Therefore, the upper tolerance limit is computed using equation  
[17.17] as: 

 
  
TL = exp 2.509 + 3.187 × 0.628�	 �� = 90.96 ppb  

Step 3. Compare the measurements at each compliance well to the upper tolerance limit, that is TL = 
90.96 ppb. Since none of the original chrysene concentrations exceeds the upper TL, there is 
insufficient evidence of chrysene contamination in these data. � 
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When an assumption of normality cannot be justified especially with a significant portion of non-
detect observations, the use of non-parametric tolerance intervals should be considered. The upper 
tolerance limit in a non-parametric setting is usually chosen as an order statistic of the sample data 
(Guttman, 1970), commonly the maximum value or maybe the second or third largest value observed.  

Because the maximum observed background value is often taken as the upper tolerance limit, non-
parametric tolerance intervals are easy to construct and use. The sample data needs to be ordered, but no 
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ranks need be assigned to the concentration values other than to determine the largest measurements. 
This also means that non-detects do not have to be uniquely ordered or handled in any special manner. 

One advantage to using a maximum concentration instead of assigning ranks to the data (Wilcoxon 
rank-sum or Kruskal-Wallis tests) is that non-parametric tolerance intervals are reflective of actual 
concentration magnitudes. Another advantage is that unless all the background data are non-detect, the 
maximum value will be a detected concentration leading to a well-defined upper tolerance limit. If all 
the sample data are non-detect, an RL (e.g., the lowest achievable quantitation limit [QL]) may serve as 
an approximate upper tolerance limit. 

� ��&%����������������%��������

Unlike parametric tolerance intervals, the desired coverage (�) or confidence level (1– �) cannot be 
pre-specified using a non-parametric limit.  Instead, the achieved coverage and/or confidence level 
depends entirely on the background sample size (n) and the order statistic chosen as the upper tolerance 
limit (e.g., the maximum value). Guttman (1970) has shown that the coverage of the limit follows a beta 
probability density with cumulative distribution: 

 
  
It n − m + 1,m( )=

Γ n + 1( )
Γ n − m + 1( )Γ m( )u=0

t

� un− m 1− u( )m−1
du  [17.18] 

where n = sample size and m = [(n+1)−(rank of upper tolerance limit value)]. If the background 
maximum is selected as the tolerance limit, its rank is equal to n and so m = 1. If the second largest value 
is chosen as the limit, its rank would be equal to (n−1) giving m = 2. 

As a non-parametric procedure, no distributional model must be fit to the background 
measurements. It is assumed, however, that the compliance point data follow the same distribution as 
background — even if unknown — under the null hypothesis. Even though no distributional model is 
assumed, order statistics of any random sample follow certain probability laws as noted above. Since the 
beta distribution is closely related to the more familiar binomial distribution, Guttman showed that in 
order to construct a non-parametric tolerance interval with at least γ coverage and (1–α) confidence 
probability, the number of (background) samples should be chosen such that:  

 
  

n

t

�

��
�

��t = m

n

� 1− γ( )t
γ n− t ≥ 1− α  [17.19] 

If the background maximum is selected as the upper tolerance limit, so that m = 1, this inequality 
reduces to the simpler form 

   1− γ n ≥ 1− α . [17.20] 

Table 17-4 in Appendix D provides minimum coverage levels with 95% confidence for various 
choices of n, using either the maximum sample value or the second largest measurement as the tolerance 
limit. As an example, with n = 16 background measurements, the minimum coverage is γ  = 83% if the 
background maximum is designated as the upper tolerance limit and γ  = 74% if the tolerance limit is 
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taken as the second largest background value. In general, Table 17-4 of Appendix D illustrates that if 
the underlying distribution is unknown, more background samples are needed compared to the 
parametric setting in order to construct a tolerance interval with sufficiently high coverage. Parametric 
tolerance intervals do not require as many background samples precisely because the form of the 
underlying distribution is assumed to be known. 

An alternate way to construct an appropriate tolerance limit is to calculate the maximum 
confidence level for various choices of n guaranteeing at least 95% coverage.  With n = 8 background 
measurements, the approximate confidence level is at most 34% when the largest value is taken as the 
tolerance limit and only 6% if the second largest value is taken as the tolerance limit. Clearly, it is 
advantageous to fit a parametric distributional model to the data if at all possible unless n is fairly large. 

Although non-parametric tolerance limits do not require an assumption of normality, other 
assumptions of tolerance limits apply equally to the parametric and non-parametric versions. 
Specifically, the sample data should be statistically independent and show no evidence of 
autocorrelation, trends, or seasonal effects in background. Applied as an interwell test, there should also 
be minimal to no natural on-site spatial variation. 

By construction, outliers in background can be a particular problem for non-parametric tolerance 
limits, especially if the background maximum is chosen as the upper limit. A limit based on a large, 
extreme outlier will result in a test having little power to detect increases in compliance wells. 
Consequently, the background sample should be screened ahead of time for possible outliers (Chapter 
12). Confirmed outliers should be removed from the data set before setting the tolerance limit.  

An important caveat to this advice is that almost all statistical outlier tests depend crucially on the 
ability to fit the remaining data (minus the suspected outlier(s)) to a known statistical distribution. In 
those cases where a non-parametric tolerance limit is selected because of a large fraction of non-detects, 
fitting the data to a distributional model may be difficult or impossible, negating formal outlier tests. As 
an alternative, the non-parametric upper tolerance limit could be set to a different order statistic in 
background (i.e., other than the maximum), to provide some insurance against possible large outliers. 
This strategy will work provided there are enough background measurements to allow for adequately 
high coverage and confidence in the resulting limit. 

� �����%���

Step 1. Sort the set of background data into ascending order and choose either the largest or second 
largest measurement as the upper TL. Use Table 17-4 in Appendix D to determine the 
coverage γ associated with 95% or 99% confidence. Note also that if the largest or second 
largest measurement is a non-detect, the upper tolerance limit should be set to the RL most 
appropriate to the data (e.g., the lowest achievable practicable quantification limit [PQL]). 

Step 2. Compare each compliance point measurement against the upper tolerance limit. Identify 
significant evidence of possible contamination at any compliance well in which one or more 
measurements exceed the upper tolerance limit. If the upper tolerance limit equals the RL, a 
violation should be flagged anytime a detected value is quantified above the RL. 

Step 3. Because the risk of false positive errors is greatly increased if either the confidence level or 
coverage drop substantially below 95%, both of these parameters should be routinely reported 
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and noted as being below the target levels. One should also strongly consider comparing one 
or more verification resamples against the upper tolerance limit before identifying a clear 
violation.  

��@���������(�

Use the following copper background data to establish a non-parametric upper tolerance limit and 
determine if either compliance well shows evidence of copper contamination. 
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Step 1. The pooled background data in Wells 1, 2, and 3 have a maximum observed value of 9.2 ppb. 
Set the 95% confidence upper tolerance limit equal to this value. Because 24 background 
samples are available, Table 17-4 in Appendix D indicates that the minimum coverage is 
equal to 88%. To increase either the coverage, more background samples would have to be 
collected.  

Step 2. Compare each sample in compliance Wells 4 and 5 to the upper tolerance limit. Since none of 
the measurements at Well 5 is above 9.2 ppb, while one sample from Well 4 is above the 
limit, conclude that there may be significant evidence of copper contamination at Well 4 but 
not Well 5. 

Step 3. Note that with only 88% coverage and 24 background samples, the risk of a false positive 
result is more than 10%. Well 4 should be resampled to determine whether the exceedance is 
replicated. � 
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The Unified Guidance recommends trend testing as an intrawell alternative to prediction limits or 
control charts when those methods are not suitable. Prediction limits and control charts (as well as t-tests 
and ANOVA) all involve a comparison of compliance and background populations under the key 
assumption that the underlying concentration distributions are stationary over time. That is, the 
populations are presumed to have stable (i.e., roughly constant) means over the period of sampling prior 
to statistical evaluation. 
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Unfortunately, there is no guarantee that groundwater populations will remain stable during long-
term monitoring.  Because sampling at many sites is generally done on a quarterly, semi-annual, or 
annual basis, it will generally take one to two years or more to collect enough background data to run the 
statistical tests discussed in the Unified Guidance. Over this length of time, the statistical characteristics 
of groundwater may or may not change in significant ways. 

If background groundwater conditions are in a state of flux, trend tests provide a significant 
advantage over both intrawell prediction limits and control charts. Both of the latter methods involve a 
designation of some portion of the historical sampling record as the intrawell background for a given 
compliance well. Ideally, this intrawell background should consist of measurements known to be 
uncontaminated and which represent a random sample from a stable underlying population, just as with 
t-tests and ANOVA. If the mean and/or standard deviation of the underlying population changes while 
intrawell background is being compiled, results of either prediction limit or control chart tests against 
more recently collected data can be severely biased or altogether inaccurate. 

One drawback to the Shewhart-CUSUM control charts presented in Chapter 20 is that they are 
somewhat sensitive to the parametric assumption of underlying normality. If the measurements are 
lognormal rather than normal, for instance, the nominal performance characteristics (i.e., Type I error 
rate and statistical power) of control charts are significantly affected. By the same token, control charts 
are impacted if the intrawell background contains a large fraction of non-detects. Non-detect adjustments 
can sometimes be made to the baseline data via methods discussed in Chapter 15, but if a normalizing 
transformation or adjustment is not successful, no straightforward non-parametric control chart exists. 

Consequently, neither prediction limits nor control charts are appropriate for every circumstance 
where an intrawell comparison may be warranted or necessary. Thus, the Unified Guidance 
recommends that users consider trend testing as an alternative to prediction limits or control charts 
when those methods are not suitable as intrawell techniques. Tests for trend are specifically designed 
to identify those groundwater populations whose mean concentrations are not stationary over time, but 
rather are increasing (or decreasing) by measurable amounts. Ultimately, the goal of any reasonable 
detection or compliance/assessment monitoring program is to determine whether or not the 
concentration levels of key contaminants or indicator parameters have significantly increased during the 
period of monitoring and, if so, whether the increase is attributable to facility waste management 
practices. 

The detection of trends is a complex subject. Whole textbooks are devoted to the more general 
topic of time series analysis, including the identification and modeling of time trends — step functions, 
linear and quadratic trends, exponential growth, etc. The Unified Guidance only attempts to identify the 
simplest kind of linear increases, not the specification or testing of more complex models. The methods 
described below are all designed to effectively test for (increasing) linear trends, though they will also 
identify simple increases over time when a trend is present but does not follow a strictly linear pattern. 

The Unified Guidance recommends using trend tests in detection monitoring to measure the extent 
and nature of an apparent concentration increase, especially to determine whether or not the increase 
occurs consistently over time. Two questions are of particular interest: 1) is there a statistically 
significant, (positive) trend over the period of monitoring? and 2) what is the nature (i.e., slope and 
intercept) of the trend? By identifying a positive trend, one can show that contaminant levels have gotten 
worse compared to early measurements from the well being tested. Furthermore, by measuring the nature 
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of the trend, including the average rate of increase per unit of time, one can estimate how rapidly 
concentration levels are increasing and the current mean- or median-level magnitude of contamination. 
Such information can provide an invaluable portrait of the changes occurring on-site and probably offers 
the most compelling evidence — under these conditions — for demonstrating that the basic null 
hypothesis of detection monitoring has been violated. 
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The most common way to measure a linear trend is to compute a linear regression of concentration 
data when plotted against the time or date of sample collection. By way of interpretation, each point 
along a linear regression trend line is an estimate of the true mean concentration at that point in time. 
Thus, a linear regression can be used to assess whether or not the population mean at a compliance well 
has significantly increased or decreased. 

Linear regression is a standard technique in statistics textbooks and many data analysis software 
packages. It is more generally applicable to linear relationships between any pair of random variables 
and not simply to time trends. Good references for performing linear regression and for checking and 
verifying its assumptions include Draper and Smith (1998) and Cook and Weisberg (1999).  

Unlike prediction limits or control charts which are constructed using only the background data, 
trend tests including linear regression are computed with all available earlier and more recent data at the 
compliance well of interest. One then might incorrectly assume that a comparison against intrawell 
background is not being conducted.  But an intrawell comparison does occur with a trend test.  Statistical 
identification of a structured pattern of increase from the first portion of the sampling record to more 
recent data indicates that concentration levels are no longer similar to intrawell background, but have 
risen more than expected by chance. 

Statistical identification of a positive trend involves testing the estimated slope coefficient from the 
linear regression trend line. A specially constructed t-test is used to make this determination, as 
described below. If this test is significant, the slope is judged to be different from zero, indicating that a 
change in concentration levels has occurred over the period of sampling represented by the data set. 

� ��&%����������������%��������

Linear regression as a parametric statistical technique makes a number of underlying assumptions. 
Among the most important of these are that the regression residuals (i.e., the difference between each 
concentration measurement and its predicted value from the regression equation) are approximately 
normal in distribution, homoscedastic (i.e., equal in variance at different times and for different mean 
concentration levels), and statistically independent. Significant skewness or the presence of outliers can 
bias or invalidate the results of a trend test based on linear regression. Furthermore, standard linear 
regression methods do not account for non-detects or missing data values at selected sampling events.  

Because the key assumptions for linear regression depend not on the original measurements but 
rather on the regression residuals, a tentative trend line needs to first be constructed before its 
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assumptions can be checked. Once a linear regression on time is fitted to the data, the residuals around 
the trend line need to be computed and then tested for normality, apparent skewness, and equal variance 
over time. This last assumption is particularly important to testing whether the slope of an apparent trend 
is statistically different from zero (a zero slope indicating that well concentrations have not changed over 
time). 

Inferences around a linear regression are generally appropriate when three conditions hold: 1) the 
residuals from the regression are approximately normal or at least reasonably symmetric in distribution; 
2) a scatter plot of residuals versus concentrations indicates a scatter cloud of essentially uniform 
vertical thickness or width (i.e., the scatter cloud does not tend to increase in width with the level of 
concentration which would suggest a proportional effect between the underlying population mean and 
variance); and 3) a scatter plot of residuals versus time also exhibits a uniformly thick scatter cloud. If 
the thickness or width is substantially different at distinct time points, the assumption of equal variances 
over time may not be true. 

If any of these conditions is substantially violated, it may indicate that the basic trend is either non-
linear or the magnitude of the variance is not independent of the mean concentration level and/or the 
time of sampling. One possible remedy is to try a transformation of the concentration data and re-
estimate the linear regression. This will change the interpretation of the estimated regression from a 
linear trend of the form  y = a + bt , where y and t represent concentration and time respectively, to a 
non-linear pattern. As an example, if the concentration data are log-transformed, the regression equation 
will have the form   log y = a + bt . Back-transformed to the original concentration scale, the trend 

function will then have the form 
  
y = exp a + bt( ). 

In transforming the regression data this way, the estimated trend in the concentration domain (after 
back-transforming) no longer represents the original mean. Rather, the transformation induces a bias 
when converted back to the raw-scale data. If a log transformation is used, for instance, the back-
transformed trend line will represent the raw-scale geometric mean and not the arithmetic mean. As with 
Student’s t-tests on lognormal data (Chapter 16), demonstrating that the geometric mean is increasing 
also implies that the arithmetic mean has risen so long as the regression residuals are homoscedastic. 

A minimum of 8 to 10 measurements is generally necessary to compute a linear regression, 
especially to estimate the variance around the trend line (known as the mean squared error or MSE). 
The regression residuals should be statistically independent, an assumption that can be approximately 
verified via one of the autocorrelation tests of Chapter 14. 

One last assumption is that there should be few if any non-detects when computing a linear 
regression. As a matter of common sense, a significant increasing or decreasing trend should be based on 
reliably quantified measurements. If this is not the case, the user should check to see whether the “trend” 
may be an artifact induced by changes in detection and/or quantitation limits over time. The 
concentration levels of a series of non-detects may appear to be decreasing, for instance, simply because 
analytical methods have improved over the years leading to lower RLs. Such artifacts of plotting and 
data reporting should not be considered real trends. 

When the assumptions of linear regression cannot be verified at least approximately, a non-
parametric trend method should be considered instead. Sections 17.3.2 and 17.3.3 discuss the Mann-
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Kendall test for trend and the Theil-Sen trend line. These methods can be particularly valuable when 
constructing trends on data sets containing non-detects. 

� �����%���

Step 1. Construct a time series plot of the compliance point measurements. If a discernible trend is 
evident, compute a linear regression of concentration against sampling date (time), letting xi 
denote the ith concentration value and ti denote the ith sampling date. Estimate the linear slope  
b̂ with the formula: 

 ( ) ( ) 2

1

1ˆ
t

n

i
ii snxttb ⋅−⋅−=�

=

 [17.21] 

 This estimate then leads to the regression equation, given by: 

 ( )ttbxxt −⋅+= ˆˆ  [17.22] 

 where  t  denotes the mean sampling date,   st
2  is the variance of sampling dates,  x  is the mean 

concentration level, and tx̂  represents the estimated mean concentration at time t. 

 Note: though the variable t above represents time, it could just as easily signify another 
variable, perhaps a second constituent for which an association with x is estimated. 

Step 2. Compute the regression residual at each sampling event i with equation [17.23]: 

 iii xxr ˆ−=  [17.23] 

 Check the set of residuals for lack of normality and significant skewness using the techniques 
in Chapter 10. Also, plot the residuals against the estimated regression values ( ix̂ ) to check 
for non-uniform vertical thickness in the scatter cloud. Make a similar check by plotting the 
residuals against the sampling dates (ti). 

If the residuals are non-normal and substantially skewed and/or the scatter clouds appear to 
have a definite pattern (e.g., funnel-shaped; “U”-shaped; or, residuals mostly positive on one 
end of graph and mostly negative on the other end, instead of randomly scattered around the 
horizontal line r = 0), repeat Steps 1 and 2 after first attempting a normalizing transformation. 

Step 3. Calculate the estimated variance around the regression line (also known as the mean squared 
error [MSE]) with  equation [17.24]: 

 
  
se

2 =
1

n − 2
ri

2

i=1

n

�  [17.24] 

Step 4. Compute the standard error of the linear regression slope coefficient using the s2
e result from 

Step 3 in equation [17.25]: 
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22ˆ  [17.25] 

 Step 5. Test whether the trend is significantly different from zero by forming the t-statistic ratio in 
equation [17.26]: 

 ( )bsebtb
ˆˆ=  [17.26] 

 This t-statistic (tb) has n–2 degrees of freedom [df]. Given a level of significance (�), choose 
the critical point (tcp) for the test as the (1– �) × 100th percentage point of the Student’s t-
distribution with (n–2) df or tcp = t1–�,n–2. Compare tb against the critical point. If tb > tcp, 
conclude that the slope of the trend is both positive and significantly different from zero at the 
�-level of significance. If tb < –tcp, conclude there is a significant decreasing trend. If neither 
exists, there is insufficient evidence of an increasing or decreasing trend. 
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The following groundwater chloride measurements (n = 19) were collected over a five-year period 
at a solid waste landfill. Test for a significant trend at the � = 0.01 level using linear regression. 
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Step 1. Check for an apparent trend on a time series plot (Figure 17-2). Since the chloride values are 
increasing in reasonably linear fashion, compute the tentative regression line using equations 
[17.21] and [17.22]. To compute the slope estimate, first convert the sample dates to elapsed 
days using a starting date prior to the first event. In this case, choose an arbitrary starting date 
of 2002-01-01 as zero and compute the elapsed days as listed in the table above. 

Using elapsed days as the time variable, compute the sample mean and variance to get: 
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t = 941.79 days

st
2 = 279374.3 days2  

Then compute the tentative slope as: 

 ( ) ( )[ ] ( )[ ] 0031.3.2793741197.1779.94117595.1179.94176ˆ =⋅−⋅−++⋅−= �b  

 and the regression line itself as: 

 ( ) ( )79.9410031.432.14ˆˆ −⋅+=−⋅+= tttbxxt  

 where the mean chloride value is   x = 14.432 ppm . The regression line is overlaid on the 
scatter plot in Figure 17-2. 
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Step 2. Calculate the regression residual at each sampling event using equation [17.23]. This involves 
computing an estimated concentration along the regression line for each sampled time (t) and 
then subtracting from the observed concentration. For example, the residual at t = 407 is 

 48.078.123.12ˆ −=−=− tt xx  

 All the residuals are listed in the table above. Then check the residuals for normality, 
homoscedasticity, and lack of association with the predicted values from the regression line. 
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Figure 17-3 is a probability plot of the residuals, indicating good agreement with normality. 
Figure 17-4 is a scatter plot of the residuals versus sampling date and Figure 17-5 is a scatter 
plot of the residuals versus predicted values from the trend line. Both of these last plots do not 
exhibit any particular trends or patterns with sampling date or the trend line predicted values; 
the residuals are fairly randomly scattered. 

Step 3. Compute the MSE of the regression using the squared residuals in equation [17.24] to get 

 ( ) ( ) ( )[ ]�
=

=+++−⋅=⋅
−

=
n

i
ie r

n
s

1

22222 5628.074.67.25.
17
1

2
1

�  

Step 4. Calculate the standard error of the regression slope coefficient using equation [17.25]: 

 ( ) ( ) ( ) ( )[ ] 00033.79.941175979.941765628.ˆ 22

1

22 =−++−=−= �
=

�

n

i

e ttsbse  

Step 5. Form the t-statistic ratio with formula [17.26] to get: 

 ( ) 39.900033.00031.0ˆˆ === bsebtb  

 Since � = 0.01, compare this value to a critical point equal to the 99th percentile of a Student’s 
t-distribution with (n–2) = 17 degrees of freedom, that is, tcp = t.99,17 = 2.567. Since the t-
statistic is substantially larger than the critical point, conclude the upward trend is significant 
at the 1% �-level. � 
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The Mann-Kendall test (Gilbert, 1987) is a non-parametric test for linear trend, based on the idea 
that a lack of trend should correspond to a time series plot fluctuating randomly about a constant mean 
level, with no visually apparent upward or downward pattern. If an increasing trend really exists, the 
sample taken first from any randomly selected pair of measurements should on average have a lower 
concentration than the measurement collected at a later point. The Mann-Kendall statistic is computed 
by examining all possible pairs of measurements in the data set and scoring each pair as follows.  An 
earlier measurement less in magnitude than a later one is assigned a value of 1.  If an earlier value is 
greater in magnitude than a later sample, the pair is tallied as –1; two identical measurement values are  
assigned  0. 

After scoring each pair in this way and adding up the total to get the Mann-Kendall statistic (S), a 
positive value of S implies that a majority of the differences between earlier and later measurements are 
positive, suggestive of an upward trend over time. Likewise, a negative value for S implies that a 
majority of the differences between earlier and later values are negative, suggestive of a decreasing 
trend. A value near zero indicates a roughly equal number of positive and negative differences.  This 
would be expected if the measurements were randomly fluctuating about a constant mean with no 
apparent trend. 

To account for randomness and inherent variability in the sample, the Mann-Kendall test is based 
on the critical ranges of the statistic S likely to occur under stationary conditions.  The larger the absolute 
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value of S, the stronger the evidence for a real increasing or decreasing trend. The critical points for 
identifying a trend get larger as the level of significance (α) drops. Only if the absolute value of the test 
statistic (S) is larger than the critical point is a statistically significant increasing or decreasing trend 
indicated. 

��&%����������������%��������

As a non-parametric procedure, the Mann-Kendall test does not require the underlying data to 
follow a specific distribution. Ranks of the data are not explicitly used in forming the test statistic as 
with the Wilcoxon rank-sum.  Only the relative magnitudes of the concentration values are needed to 
compute S, not the actual concentrations themselves.  Non-detects can be treated by assigning them a 
common value lower than any of the detected measurements.  Any pair of tied values or any pair of non-
detects is simply given a score of 0 in the calculation of the Mann-Kendall statistic S. 

This treatment of non-detects is an imperfect remedy since it is usually impossible to know 
whether censored values are actually tied in magnitude. Further complications are introduced when there 
are multiple RLs and/or an intermingling of detected values and RLs.  Lab qualifiers may be used to aid 
the scoring of pairs that involve non-detects or estimated concentrations. Instead of treating all non-
detects as tied, consider ‘undetected or U’ values as the lowest in magnitude, other non-detects as higher 
in magnitude than U’s but lower than estimated concentrations (‘J’ or ‘E’ values). In this way, a richer 
scoring of the sample pairs may be possible. 

When the sample size n becomes large, exact critical values for the statistic S are not readily 
available. However, as a sum of identically-distributed random quantities, the behavior of S for larger n 
tends to approximate the normal distribution by the Central Limit Theorem. Therefore a normal 
approximation to S can be used for n > 101. In this case, a standardized Z-statistic is formed by first 
computing the expected mean value and standard deviation of S. From the discussion above, when no 
trend is present, positive differences in randomly selected pairs of measurements should balance 
negative differences, so the expected mean value of S under the null hypothesis of no trend is simply 
zero. The standard deviation of S can be computed using equation [17.27]: 

 
  
SD S�	 �� =

1
18

n n − 1( ) 2n + 5( )− t j t j − 1( )2t j + 5( )
j=1

g

�
�

	



�

�
  [17.27] 

where n is the sample size, g represents the number of groups of ties in the data set (if any), and tj is the 
number of ties in the jth group of ties. If no ties or non-detects are present, equation [17.27] reduces to 
the simpler form: 

 
  
SD S�	 �� =

1
18

n n − 1( ) 2n + 5( ) [17.28] 

                                                 

1   Guidance Table 17-5 contains exact confidence levels up to n = 10.  Exact confidence levels for n < 20 have been 
developed in (Hollander & Wolfe, 1999), Table A.30.   These might be preferentially used if sample sizes are fairly small 
and the data contain non-detect values. 
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Once the standard deviation of S has been derived, the standardized Z-statistic for an increasing (or 
decreasing) trend is formed using the equation: 

 
  
Z = S − 1( ) SD S�	 ��  [17.29] 

Note that although the expected mean value of S is zero, applying the continuous normal to the discrete S 
distribution is an approximation.  Therefore, a continuity correction is made to Z by first subtracting 1 
from the absolute value of S. The final Z-statistic can then be compared to an α-level critical point taken 
from Table 10-1 in Appendix D to complete the test. 
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Step 1. Order the data set by sampling event or time of collection, x1, x2, to xn. Then consider all 
possible differences between distinct pairs of measurements, (xj – xi) for j > i. For each pair, 
compute the sign of the difference, defined by: 

 

  

sgn x j − xi( )=
1

0
−1

  

if x j − xi( )> 0

if x j − xi( )= 0

if x j − xi( )< 0

�

�

�
�

�

�
�

 [17.30] 

 Pairs of tied values including non-detects, will receive scores of zero using equation [17.30]. 

Step 2. Compute the Mann-Kendall statistic S using equation [17.31]: 

 
  
S = sgn x j − xi( )

j= i+1

n

�
i=1

n

�  [17.31] 

 In equation [17.31] the summation starts with a comparison of the very first sampling event 
against each of the subsequent measurements. Then the second event is compared with each of 
the samples taken after it (i.e., the third, fourth, fifth, etc.).  Following this pattern is probably 
the most convenient way to ensure that all distinct pairs are tallied in forming S.  For a sample 
of size n, there will be n�(n-1)/2 distinct pairs. 

Step 3. If n � 10, and given the level of significance (α), determine the critical point scp from Table 
17-5 of Appendix D.  If S > 0 and 

 
S > scp , conclude there is statistically significant evidence 

of an increasing trend at the α significance level. If S < 0 and 
 
S > scp , conclude there is 

statistically significant evidence of a decreasing trend. If
 
S ≤ scp , conclude there is insufficient 

evidence to identify a significant trend. 

Step 4. If n > 10, determine the number of groups of ties (g) and the number of tied values in each 
group of ties (tj). Then use equation [17.27] to compute the standard deviation of S and 
equation [17.29] in turn to compute the standardized Z-statistic. 
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Step 5. Given the significance level (α), determine the critical point zcp from the standard normal 
distribution in Table 10-1 in Appendix D. Compare Z against this critical point. If Z > zcp, 
conclude there is statistically significant evidence at the α-level of an increasing trend. If Z < –
zcp, conclude there is statistically significant evidence of a decreasing trend. If neither exists, 
conclude that the sample evidence is insufficient to identify a trend. 
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Test for a significant upward trend using the Mann-Kendall procedure in the following set of 
sulfate measurements (ppm) collected over several years. 
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Step 1. Construct a time series plot of the sulfate observations to check for a possible trend as in 
Figure 17-6. A clearly rising concentration pattern is seen, although the variability in the 
measurements appears greater toward the end of the sampling record than at the beginning. 

Step 2. Compute the difference between each distinct pair of measurements and determine the sign of 
the difference, using equation [17.30]. Then sum up the signs with equation [17.31]. Note that 
to make sure all the distinct pairs have been summed, begin with the first listed observation 
and compare it to each of values below it. Then take the second listed value and compare it to 
each of the remaining ones below it, etc. The Mann-Kendall statistic becomes: 

 ( ) ( ) ( ) 196720590sgn480490sgn480450sgn =−++−+−= �S  

Step 3. Since the sample size n = 23 > 10, form the normal approximation to the Mann-Kendall 
statistic. Because there are some ties in the data, use equation [17.27] to compute the 
approximate standard deviation. Among the sulfate measurements, there are three groups of 
ties with 3, 2, and 2 tied values in each set respectively (at values 510, 560, and 590). The 
adjusted standard deviation is then: 

 [ ] ( )( ) ( )( ) ( )( ){ }[ ] 79.37522122532133523212323
18
1 =+⋅−⋅+++⋅−⋅−+⋅−⋅⋅= �SSD  

 Finally, using equation [17.29], the normalized Mann-Kendall statistic is: 
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Z = 196 − 1( ) 37.79 = 5.16  

Step 4. The Z statistic can be compared to a critical point from the standard normal distribution in 
Table 10-1 in Appendix D. As large as it is, the test statistic is bigger than the critical point 
for any usual significance level, suggesting that the trend appears to be real and not just a 
chance artifact of the sample. � 
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The Mann-Kendall procedure is a non-parametric test for a significant slope in a linear regression 
of the concentration values plotted against time of sampling.  But the Mann-Kendall statistic S does not 
indicate the magnitude of the slope or estimate the trend line itself even when a trend is present. This is 
slightly different from parametric linear regression, where a test for a significant slope follows naturally 
from the estimate of the trend line. Even a relatively modest slope can be statistically distinguished from 
zero with a large enough sample.  It is best to first identify whether or not a trend exists, and then 
determine how steeply the concentration levels are increasing over time for a significant trend. The 
Theil-Sen trend line (Helsel, 2005) is a non-parametric alternative to linear regression which can be used 
in conjunction with the Mann-Kendall test. 

The Theil-Sen method handles non-detects in almost exactly the same manner as the Mann-
Kendall test.  It assigns each non-detect a common value less than any other detected measurement (e.g., 
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half the RL). Unlike the Mann-Kendall test, however, the actual concentration values are important in 
computing the slope estimate in the Theil-Sen procedure. The essential idea is that if a simple slope 
estimate is computed for every pair of distinct measurements in the sample (known as the set of pairwise 
slopes), the average of this series of slope values should approximate the true slope. The Theil-Sen 
method is non-parametric because instead of taking an arithmetic average of the pairwise slopes, the 
median slope value is determined. By taking the median pairwise slope instead of the mean, extreme 
pairwise slopes — perhaps due to one or more outliers or other errors — are ignored and have little if 
any impact on the final slope estimator. 

The Theil-Sen trend line is also non-parametric because the median pairwise slope is combined 
with the median concentration value and the median sample date to construct the final trend line. As a 
consequence of this construction, the Theil-Sen line estimates the change in median concentration over 
time and not the mean as in linear regression. 

� ��&%����������������%��������

The Theil-Sen procedure does not require normally-distributed trend residuals as in a linear 
regression.  It is also not critical that the residuals be homoscedastic (i.e., having equal variance over 
time and with increasing average concentration level). It is important to have at least 4 and preferably at 
least 8 or more observation on which to construct the trend.  But trend residuals are assumed to be 
statistically independent.  Approximate checks of this assumption can be made using the techniques of 
Chapter 14, once the estimated trend has been removed and the number of non-detect data is limited. 
Sampling events should also be spaced far enough apart relative to the site-specific groundwater velocity 
so that an assumption of physical independence of consecutive sample volumes is reasonable. 

A more difficult problem is encountered when a large fraction of the data is non-detect. As long as 
less than half the measurements are non-detects occurring in the lower part of the observed concentration 
range, the median concentration value will be quantified and the median pairwise slope will generally be 
associated with a pair of detects.  Larger proportions of non-detect data make computation of the Theil-
Sen trend line more difficult and uncertain. The reason is that each time a non-detect is paired with a 
quantified measurement, the pairwise slope is known only within a range of values. One end of the range 
results from supposing the true non-detect concentration is equal to zero; the other when the non-detect 
concentration is equal to the RL. 

� �����%���

Step 1. Order the data set by sampling event or time of collection, x1, x2, to xn. Then consider all 
possible distinct pairs of measurements, (xi, xj) for j > i. For each pair, compute the simple 
pairwise slope estimate: 

 
 
mij = x j − xi( ) j − i( ) [17.32] 

 With a sample size of n, there should be a total of N = n(n–1)/2 such pairwise estimates mij. If 
a given observation is a non-detect, use half the RL as its estimated concentration. 

Step 2. Order the N pairwise slope estimates (mij) from least to greatest and rename them as m(1), m(2), 
…, m(N). Then determine the Theil-Sen estimate of slope (Q) as the median value of this list. 
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Finding this value will depend on whether N is even or odd, but the following equation can be 
used: 

 

  

Q =
m

N +1�	 �� 2( ) if N  is odd

m
N 2( ) + m

N + 2�	 �� 2( )( ) 2 if N  is even

�

�
�

�
�

 [17.33] 

Step 3. Order the sample by concentration magnitude from least to greatest, x(1), x(2), to x(n). Determine 
the median concentration with the formula: 
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222

21  [17.34] 

 Again replace each non-detect by half its RL during this calculation. Also find the median 
sampling date ( t~ ) using the ordered times t1, t2, to  tn by a similar computation. 

Step 4. Compute the Theil-Sen trend line with the equation: 

 ( ) ( ) tQtQxttQxx ⋅+⋅−=−⋅+= ~~~~  [17.35] 

 Using equation [17.35], an estimate can be made at any time (t) of the expected median 
concentration (x). 
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Use the following sodium measurements to compute a Theil-Sen trend line. Note that the sample 
dates are recorded as the year of collection (2-digit format) plus a fractional part indicating when during 
the year the sample was collected.  This allows an annual slope estimate, since 1 unit = 1 year. 
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Step 1. Compute the pairwise slopes for each distinct pair of measurements using equation [17.32]. 
With n = 10 observations, there will be a total of 10(9)/2 = 45 such pairs. The first few are 
listed below: 
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m12 = 53 − 56( ) 90.1− 89.6( )= −6

m13 = 51− 56( ) 90.8 − 89.6( )= −4.17

m14 = 55 − 56( ) 91.1− 89.6( )= −.667

 

Step 2. Since the total number of distinct pairs is odd, sort the list of pairwise slopes as in the table 
below and let Sen’s estimated slope equal the middle or 23rd largest value in this list. This 
gives an estimate of Q = 1.33 ppm increase per year, an estimate in line with the time series 
plot of Figure 17-7. 

Step 3. Compute the median concentration value 5.57~ =x  and the median sample date 6.92~ =t  from 
the table above. Then calculate the Theil-Sen trend line using the slope estimate from Step 2: 

 
  
x = 57.5 + 1.333 t − 92.6( )= −65.97 + 1.333t  

 This trend line can be used to estimate the predicted median concentration (x) at any desired 
time in years (t). For example, at the beginning of 1998 (t = 98), the trend line would predict a 
median sodium concentration of approximately x = 64.7 ppm. � 

 

$��%� *���+����

'�����

$��%� *���+����

'�����

�� �?� 
(� ��)'D�


� �(��?�� 
)� ��?�'�

'� �'� 
?� ��??��

(� �
�D)�� 
�� ��DD��

)� �
� 
D� 
�

?� ���?� 
�� 
�

�� ���??�� '�� 
�

D� ���)� '�� 
��D
�

�� ���)� '
� 
�
)�

��� ���(� ''� 
�
)�

��� ��'''� '(� 
�'''�

�
� ��())� ')� 
�'''�

�'� ��)� '?� 
�)�

�(� ���?�� '�� 
�?���

�)� ���?�� 'D� '�'''�

�?� ��DD�� '�� '���'�

��� ���'D� (�� (�

�D� ���()� (�� )�

��� ������ (
� )���(�


�� ���('� ('� D�


�� ��
� ((� ���



� ��'''� ()� �'�'''�


'� ��'''� � �

 



��������	
���������������������������������������� �����������������

� ���'D� ����	�
����

�*+,�-��������*0-��-�*-6��341�45��48*,0�4.�-.1��1*4.6�=BB0>�

 



��������	
�������������������������� ���������������

� � � ���������	�
��
�

 

�������
���������������������������

18.1 INTRODUCTION TO PREDICTION LIMITS ....................................................................................................... 18-1 
18.1.1 Basic Requirements for Prediction Limits .......................................................................................... 18-4 
18.1.2 Prediction Limits With Censored Data............................................................................................... 18-6 

18.2 PARAMETRIC PREDICTION LIMITS ............................................................................................................... 18-7 
18.2.1 Prediction Limit for m Future Values................................................................................................. 18-7 
18.2.2 Prediction Limit for a Future Mean ................................................................................................. 18-11 

18.3 NON-PARAMETRIC PREDICTION LIMITS..................................................................................................... 18-16 
18.3.1 Prediction Limit for m Future Values............................................................................................... 18-17 
18.3.2 Prediction Limit for a Future Median .............................................................................................. 18-20 

 

This chapter introduces the concept of statistical intervals and focuses on several types of 
prediction limits useful for detection monitoring. The requirements and common assumptions of such 
limits are explained, as well as specific descriptions of: 

� Prediction limits for m future values (Section 18.2.1) 

� Prediction limits for  future means (Section 18.2.2) 

� Non-parametric prediction limits for m future values (Section 18.3.1) 

� Non-parametric prediction limits for a future median (Section 18.3.2) 
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First discussed in Chapter 6, prediction limits belong to a class of methods known as statistical 
intervals. Statistical intervals represent concentration or measurement ranges computed from a sample 
that are designed to estimate one or more characteristics of the parent population. In groundwater 
monitoring, statistical intervals offer a convenient and statistically valid way to test for significant 
differences between background versus compliance point groundwater measurements. 

The statistical interval accounts for variability inherent not only in future measurements, but also 
additional uncertainty in the prediction limit itself.   The latter is derived from a relatively small 
background sample with an associated level of variability in estimating the true characteristics of the 
underlying groundwater population. 

Prediction limits are generally easy to construct and have a straightforward interpretation. 
Background data are used to construct a concentration limit PL, which is then compared to one or more 
observations from a compliance point population. The acceptable range of concentrations includes all 
values no greater than the prediction limit.  The appropriate prediction interval will generally have the 
form [0, PL], with the upper limit PL as the comparison of importance.  Unless pH or a similar 
parameter is being monitored, a one-sided upper prediction limit is used in detection monitoring. 

A significant advantage to prediction limits is their flexibility, which can accommodate a wide 
variety of groundwater monitoring networks. Prediction limits can be constructed so that as few as one 



��������	
�������������������������� ���������������

� � � ���������	�
����

new measurement per compliance well may suffice for a test. Prediction limits may be based on a 
comparison of means, medians, or individual compliance point measurements, depending on the 
characteristics of the monitoring network and the constituents being tested. 

Prediction limits can also be designed to accommodate a wide range of multiple statistical 
comparisons or tests. Each periodic statistical evaluation (e.g., semi-annually) under RCRA and other 
regulations involves separate tests at all compliance well locations for each monitoring constituent. 
Often, the number of separate statistical tests can be quite sizeable.  Prediction limits can be constructed 
to precisely account for the number of tests to be conducted, so as to limit the site-wide false positive 
rate [SWFPR] and ensure an adequate level of statistical power (see discussion in Chapter 6). 

This and the following chapter present basic concepts and procedures for using prediction limits as 
detection monitoring tests. The intent is to provide a relatively simple framework for using prediction 
limits in RCRA or CERCLA groundwater monitoring. Chapter 18 describes the construction of 
prediction limits for tests involving a single constituent at one well. It describes the basic mechanics of 
each type of prediction limit and how they differ from one another.   

Chapter 19 expands this discussion to cover multiple simultaneous prediction limit tests (i.e., all 
occurring during a single statistical evaluation or during a single year of monitoring).  Cumulative 
SWFPRs and statistical power are considered, including how these criteria impact the expected 
performance of a given prediction limit strategy. Examples are provided to illustrate these procedures, as 
well as explanations of associated tables and software. 

Specific strategies in Chapter 19 apply the concept of retesting. Generally speaking, almost any 
prediction limit procedure in detection monitoring should be combined with an appropriate retesting 
strategy. The reason is that when testing a large number of compliance point samples, it is almost 
guaranteed that one or more measurements will exceed an upper prediction limit.  Resampling of those 
wells where an exceedance has occurred can either verify the initial evidence of a release or disconfirm 
it, while avoiding unnecessary false positives. 

Chapter 6 introduced a number of key terms used in the Unified Guidance, especially for 
prediction limit and control chart tests.   The guidance applies the term comparison to individual future 
measurements or sample statistics evaluated against a prediction limit (or control chart limit), and the 
term test to represent a series of future data comparisons that ultimately result in a statistical decision. A 
1-of-m retesting procedure (described below), for instance, might involve comparison of up to m distinct 
sample measurements against the prediction limit. Each of these individual samples involves a 
comparison, but only after all the necessary individual comparisons have been made is the test complete.  
This distinction becomes particularly important when properly determining SWFPRs, a subject 
discussed both in Chapter 6 and Chapter 19. 

One or more future observations are collected for purposes of testing compliance well data, as 
distinct from the background sample from which the prediction limit is constructed. Background data 
can be obtained from upgradient wells or in combination with historical, uncontaminated compliance 
well data. In intrawell testing, data from an individual compliance well constitute both the background 
and future samples. The two data sets need to be distinct and may not overlap, even if the historical 
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background data is periodically updated with previously evaluated future samples. The key idea is that at 
any given point in time, background and future data sets are clearly distinguished. 

Formally, prediction limits are constructed to contain one or more future observations or sample 
statistics generated from the background population with a specified probability equal to (1–�). The 
probability (1–�) is known as the confidence level of the limit.  It represents the chance — over repeated 
applications of the limit to many similar data sets — that the prediction limit will contain future 
observations or statistics drawn from its background population. 

A sample of n background measurements is used to construct the prediction limit. Under the null 
hypothesis that the compliance point population is identical to background, a set of m independent 
compliance point observations or a statistic like the mean based on those observations (i.e., the future 
data) is then compared against the prediction limit. For the prediction limit to serve as a valid statistical 
test, the future observations are initially presumed to follow the same distribution as background. 

Only background values are used to construct the prediction limit.  But the probability that the 
limit contains all m future observations or sample statistics derived from those future data does not 
depend solely on the observed background.  It is also based on the number of future measurements or 
sample statistics used in the comparison and how the individual comparisons are conducted. To 
underscore this point, consider the general equation for a prediction limit based on normal or 
transformably normal populations, given by 

  PL = x +κs  [18.1] 

where x is the sample mean in background, s is the background standard deviation, and � is a multiplier 
depending on the type of prediction limit under construction. The simplest type of prediction limit test 
compares a specific number of individual future observations to the limit (PL). For example, do all three 
compliance measurements collected during a 6-month period fall within the prediction interval? The 
multiplier � and hence the prediction limit itself, changes depending on whether one, two or three 
compliance observations will be compared against PL. More generally, the �-multiplier is selected to 
account not only for the number of future comparisons, but also for the rules of the comparison strategy 
and the number of simultaneous tests to be conducted (e.g., the number of monitoring constituents times 
the number of compliance wells). 

In the simplest case of a successive comparison of m individual future measurements against PL, 
the test is labeled as an m-of-m prediction limit.  All m of the future observations need to fall within the 
prediction interval for the test to 'pass' — that is, be no greater than PL.  If any one or more of the future 
values exceed the PL, the test fails and the well is deemed to have a statistically significant increase 
[SSI] or constitute an exceedance. 

The �-multiplier appropriate for an m-of-m prediction limit test is different from the multipliers 
that would be computed for other kinds of comparison rules. Another simple type is a comparison of a 
single future mean of order p. Here, p future measurements are collected and averaged before comparing 
against PL. If the order-p mean is no greater than PL, the test passes; otherwise, it fails.  A test following 
this rule is labeled a 1-of-1 prediction limit on a future mean. The important thing to remember is that 
the �-multiplier and thus the prediction limit will differ depending on whether or not the p future values 
are first averaged or simply compared against PL one-by-one. The choice to use one rule versus the other 
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impacts the magnitude of the prediction limit and ultimately its expected statistical power and false 
positive rate. 

Other comparison rules of substantial benefit in groundwater monitoring are 1-of-m prediction 
limit on future observations or a statistic like the mean or median. This test requires at least one of m 
successive observations or statistic to fall within the prediction interval in order to pass. Operationally 
this means that if an initial compliance well measurement is no greater than PL, the test is complete and 
no further sampling need be done. If the initial value exceeds PL, one or more of (m–1) resamples need 
to be obtained.  Since these additional measurements are collected sequentially over sufficiently long 
time periods to maintain approximate statistical independence (Chapter 3), the first resample to fall 
within the prediction interval also ends the test as 'inbounds' or passing, frequently obviating the need to 
gather all m measurements. 

Another comparison rule of some use is known as the California strategy, first developed for the 
State of California RCRA program. The California strategy can be construed as a conditional rule: if an 
initial future observation is no greater than PL, further comparisons are not needed and the test passes. 
However, if the initial observation exceeds the PL, 2-of-2 or 3-of-3 resamples all need to not exceed the 
PL in order for the well to remain in compliance. A slight modification to this rule termed the modified 
California approach has better statistical power and false positive rate characteristics than the original 
California strategies, and is therefore included as a potential prediction limit test. 
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All prediction limits share certain basic assumptions when applied as tests of groundwater. Further, 
parametric prediction limits as presented in the Unified Guidance require the sample data to be either 
normally-distributed or normalized via a transformation. The key points can be summarized as follows: 

1. background and future sample measurements need to be identically and independently distributed 
(the i.i.d. presumption; see Chapter 3); 

2. sample data do not exhibit temporal non-stationarity in the form of trends, autocorrelation, or 
other seasonal or cyclic variation; 

3. for interwell tests (e.g., upgradient-to-downgradient comparisons), sample data do not exhibit 
non-stationary distributions in the form of significant natural spatial variability; 

4. background data do not include statistical outliers (a form of non-identical distributions); 

5. for parametric prediction limits, background data are normal or can be normalized using a 
transformation; and 

6. a minimum of 8 background measurements is available; more for non-parametric limits or when 
accounting for multiple, simultaneous prediction limit tests. 

 The first assumption implies that background data are randomly drawn from a single common 
parent population, especially if aggregated from more than one source well.  As discussed in Chapter 5, 
analysis of variance [ANOVA] can be used to determine the appropriateness of pooling data from 
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different background wells. There is also a presumption that the compliance point measurements follow 
the same distribution as background in the absence of a release. 

 The second assumption is corollary to the first, and requires that the background data are 
stationary over time (Chapter 3).  This can be evaluated with one or more techniques described in 
Chapter 14 on temporal variability.  These account for trends, autocorrelation, or other variation, 
perhaps by utilizing data residuals instead of the raw measurements. If the background residuals meet 
the basic points above, they can be used to construct an adjusted prediction limit. Residuals of the future 
observations would also need to be computed and compared against the adjusted prediction limit to 
ensure a valid and consistent test. 

The second assumption also requires that there be only a single source of variation in the data, 
when using the usual sample standard deviation (s) to compute the prediction limit. If there are other 
sources of variation such as seasonal patterns or temporal variation in lab analytical performance, these 
should be included in the estimate of variability.  Otherwise s is likely to be biased. One method to 
accomplish this is by use of an appropriate ANOVA model to include temporal factors affecting the 
variability (Chapter 14). Determination of the components of variance in more complicated models is 
beyond the scope of this guidance and may require consultation with a professional statistician. 

The third assumption requires that background and compliance point populations be identical in 
distribution, absent a release, for interwell tests. Spatial variation violates this assumption since the well 
population means (�) will be different, making it impossible to know whether an apparent upgradient-to-
downgradient difference is attributable to a release or simply variations in natural groundwater 
concentration levels. The assumption also requires that each population share a common variance (�2). 
Tests of equal variance (i.e., homoscedasticity) when using prediction limits may be possible either by 
examining groups of historical background and compliance point data or by performing periodic tests 
when enough compliance point measurements have been accumulated to make a diagnostic test possible. 

The fourth assumption implies that background data should be screened for outliers using the 
techniques in Chapter 12. Statistical outliers can potentially inflate a prediction limit and severely limit 
its statistical power and accuracy by over-inflating both the sample background mean ( x ) and especially 
the background standard deviation (s).  The Unified Guidance discourages automated removal of outliers 
from background samples, but all possible outliers should be examined to determine whether a cause can 
be identified (see discussion in Chapter 6). In some cases, an apparent outlier may represent a valid 
portion of the underlying background population that has not yet been sampled or observed. It also could 
represent evidence that conditions in background have changed or are changing. 

The fifth assumption of normality for parametric prediction limits can be evaluated using the 
diagnostic techniques described in Part II of the guidance. If skewed background data can be 
normalized via a transformation (e.g., the natural logarithm), the prediction limit should be constructed 
on the transformed background values. The resulting limit should either be: 1) back-transformed to the 
concentration domain (e.g., by exponentiation) when comparing future individual compliance 
observations; or 2) left in the transformed scale when compared to future mean compliance data also 
based on the same transformation.  In the latter case, use of a logarithmic transformation results in 
evaluating population medians or geometric means and not the arithmetic means. 
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When normality cannot be justified, a non-parametric prediction limit should be considered 
instead. A non-parametric limit assumes only that all the data come from the same, usually unknown, 
continuous population. Non-parametric prediction limits generally require a much larger number of 
background observations in order to provide the same level of confidence (1–�) as a comparable 
parametric limit.  Consequently, the Unified Guidance recommends that a parametric model be fit to the 
data if at all possible. 

The last assumption concerns sufficient background sample sizes.  A prediction interval can be 
computed with as few as three observations from background. However, this can result in an 
unacceptably large upper prediction limit and a test with very limited statistical power. A sample size of 
eight or more is generally needed to derive an adequate parametric prediction limit, especially if a 
retesting strategy is not employed. The exact requirements depend on the number of simultaneous tests 
(i.e., number of wells times number of constituents per well) to be made against the prediction limit and 
the type of retesting strategy adopted (see Chapter 19 for more discussion of retesting strategies). 

If a minimum schedule of quarterly sampling is being followed and there is only one background 
well, at least two years of data will be needed before constructing the prediction limit.1 If data from 
multiple background wells screened in comparable hydrologic conditions can reasonably be combined 
(see Chapter 5), pooling background data to increase background sample sizes is encouraged. 
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When a sample contains a substantial fraction of non-detects or left-censored measurements, it 
may be impossible to even approximately normalize the data  A sample data set may originate from a 
normal or transformable-to-normal population, but the uncertainty surrounding both the censored values 
and the consequent shape of the lower tail of the distribution prevents a clear identification.  If the 
apparent underlying distribution is not normal or transformable to normality, a non-parametric prediction 
limit (Section 18.3) should be used. 

Given that non-parametric prediction limits typically have much steeper background data 
requirements than their parametric counterparts, one remedy is to attempt a fit to normality by using 
censored probability plots (Chapter 15) in conjunction with either the Kaplan-Meier or robust 
regression on order statistics [ROS] techniques (Chapter 15) for left-censored data. Censored 
observations prevent a full and complete ordering of the sample, making it difficult to assess normality 
with standard probability plots (Chapter 9). Censored probability plots, on the other hand, only graph 
the detected values, but do so based on a partial ordering and ranking of the sample. Data that appear 
distinctly non-normal on a standard probability plot (where non-detects are perhaps replaced by half their 
reporting limits [RLs] to allow plotting) can sometimes appear reasonably normal on a censored 
probability plot. Transformations can also be applied and the censored probability plot reconstructed to 
see if the data can be normalized in that fashion. 

                                                 

1  The Unified Guidance does not recommend that only one background well be used in any kind of interwell or upgradient-
to-downgradient comparison. Multiple background wells are always preferred so that tests for spatial variability may be 
made and the exact nature of background better understood. 
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If the censored probability plot is close to linear and the sample approximately normalized, an 
estimated mean and standard deviation should be computed. These estimates will not be the same if each 
non-detect were replaced by half its RL, and the sample mean calculated from the resulting imputed 
sample.  To properly account for the censoring, the estimated mean (denoted as µ̂ ) and the estimated 
standard deviation (σ̂ ) needs to be derived as parameters from the normal distribution providing the 
closest fit to a partial ordering of the sample (as on a censored probability plot). The Unified Guidance 
describes two slightly different techniques for accomplishing this task. 

Once µ̂ and σ̂  estimates have been computed, an adjusted parametric prediction limit is 
constructed by substituting µ̂  for  x  and σ̂  for s in the equations of Section 18.2 or Chapter 19. For 
example, the adjusted equation for a general parametric prediction limit would become: 

 σκµ ˆˆ ⋅+=PL  [18.2] 

Another potential difference between the adjusted prediction limit in equation [18.2] and the 
unadjusted prediction limit in equation [18.1] is the number of degrees of freedom [df] used in selecting 
the �-multiplier. Absent any censored measurements, a background sample of size n would normally 
have (n–1) df. With censoring, there is greater statistical uncertainty surrounding each non-detect than 
surrounding the detected values. Because of this, the actual degrees of freedom is somewhere between d 
(the number of detects) and (n–1) (the total sample minus one). Unfortunately, there is no 
straightforward, general method to determine the true df. To be conservative, the df should be set equal 
to d, since the value of each detect is known with reasonable certainty. Setting a lower df tends to raise 
the �-multiplier and thus the prediction limit over what would be selected with an uncensored sample of 
the same size. This is consistent with the greater uncertainty associated with non-detect measurements. 
However, it is at best an approximate remedy. Further consultation with a professional statistician may 
be warranted to arrive at a better choice of the degrees of freedom. 
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A prediction limit test for m future values is constructed so that m compliance point observations 
are evaluated by determining whether or not they fall within a prediction interval derived from 
background. As mentioned in Chapter 2, some State programs may require up to 4 successive sampling 
events per evaluation period for testing, which can be addressed by the prediction limit approach 
described below. 

If the distributions of background and compliance point data are identical as assumed under the 
null hypothesis H0, all m of the compliance point observations should be no greater than the upper 
prediction limit [PL].  If any of the future observations exceeds PL, there is statistical evidence that the 



��������	
�������������������������� ���������������

� � � ���������	�
����

compliance data do not come from the same distribution as background, but instead are elevated above 
background.2  

With intrawell comparisons, a prediction limit can be computed on historical data or intrawell 
background to contain a specified number (m) of future (i.e., more recent) observations from the same 
well. If any of the future values exceeds the upper prediction limit, there is evidence of recent 
contamination at the well. 

� �����������������������������

As noted in Section 18.1, the prediction limit test on m future values is designated as an m-of-m 
test. Each of the m individual future observations need to be compared to the prediction limit [PL]. All 
should be no greater than PL for the test to pass.  The number of future observations to be collected (m) 
need to be specified in advance in order to correctly compute the �-multiplier from equation [18.1]. 
Consequently, if compliance data are collected on a regular schedule, the prediction interval can be 
constructed to cover a specified time period of future sampling. Usually this period will coincide with 
the time between statistical evaluations specified in the site permit (e.g., on a semi-annual or annual 
basis). Keep in mind also that m denotes the number of consecutive sampling events being compared to 
the prediction limit at a given well for a given constituent. 

As discussed in more detail in Chapter 6, a new prediction limit should be constructed prior to 
each statistical evaluation for interwell tests, when additional background data have been collected along 
with the new compliance point measurements. Unless there is evidence of characteristic changes within 
background groundwater quality (e.g., as demonstrated by observable trends in background), background 
data should be amassed or accumulated over time. Earlier background measurements need not be 
discarded, both to maintain an adequate background sample size and also because a larger span of 
sampling results will provide a better statistical description of the underlying background population. 
The revised prediction limit will then reflect a larger background sample size, n, but possibly the same 
number, m, of future values to be predicted at the next statistical evaluation. 

For intrawell tests, the prediction limits should be revised only after intrawell background has been 
updated (Chapter 5). Such updating may not coincide with the regular schedule of statistical evaluations 
if done, for instance, every two years or so. In that case, the same intrawell prediction limit might be 
used for multiple evaluations before being revised. 

� ���������

Step 1. Calculate the sample mean x , and standard deviation s, from the set of n background 
measurements. 

Step 2. Specify the number of individual future observations (m) from the compliance well to be 
included in the prediction interval for an m-of-m test. For an upper prediction limit with an 
overall (1−α) confidence test level for the m comparisons, use the equation: 

                                                 

2  In the context of the Unified Guidance,  m represents the number of consecutive samples being compared in the prediction 
limit test for a given well and constituent. 



��������	
�������������������������� ���������������

� � � ���������	�
��	�

 
  
PL = x + t1−α m,n−1s 1+

1
n

 [18.3] 

 It is assumed that exactly m consecutive sample values from the compliance point will be 
compared against the upper PL. Note that the quantile from a Student’s t-distribution used in 
equation [18.3] has two parameters: the degrees of freedom (n–1) and a joint comparison 
confidence level

  
1− α m( ). Most Student’s t-quantiles can be found directly or approximated 

through interpolation by looking in Table 16-1 of Appendix D. 

 Note: equation [18.3] assumes the prediction limit is applied to only one constituent at a single 
well. If multiple tests need to be performed (e.g., on multiple wells and/or multiple 
constituents), the prediction limit  takes the form: 

  PL = x +κs  [18.4] 

 where the κ-multiplier is determined using one of the strategies described in Chapter 19. 

 If a log transformation is applied to the data to bring about approximate normality, the upper 
PL should be constructed using the log-mean ( y ) and log-standard deviation (sy), using the 
equation: 

 
  
PL = exp y + t1−α m,n−1sy 1+

1
n

�

�
�

�

�
�  [18.5] 

 If multiple tests must be conducted and a log transformation has been applied to the data, the 
upper PL will have the form: 

 
  
PL = exp y +κ sy( ) [18.6] 

 Note: other transformations besides the natural logarithm are handled in a similar manner; 
compute the prediction limit on the transformed data, then back-transform the limit to the 
original concentration scale prior to comparison with any future observations. 

Step 3. Once the prediction limit (PL) has been calculated, compare each of m compliance point 
future values against PL. If all of these measurements are no greater than PL, the test passes 
and the well is deemed to be in compliance. If, however, any compliance point concentration 
exceeds PL, there is statistically significant evidence of an increase over background. 
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The data in the table below represent quarterly arsenic concentrations measured in a single well at 
a solid waste landfill. Calculate an intrawell upper prediction limit for 4 future samples with 95% 
confidence and determine whether there is evidence at the annual statistical evaluation of a possible 
release during Year 4 of monitoring. 



��������	
�������������������������� ���������������

� � � ���������	�
��
��

 

�������������������� ����������������

��)*+,-.��/�,01� ��2/-,��3**45� ��)*+,-.��/�,01� ��2/-,��3**45�

�

6/���
�

�


��"�

�

6/�����

�

�����

� ����� � �����

� !���� � ���!�

� ���
� � 
!���

6/����� ����� � �

� ����� � �

� ���� � �

� 
���� � �

6/����� !��
� � �

� 
��"� � �

� 
$�"� � �

� �!��� � �

� � � �

� ��7�
�� � �

� �/�-�7��$�!�� � �

� ���7�
$�
��

�

� �

�

� ���������

Step 1. First check the sample data for the key points identified in Section 18.1.1. As an example, a 
Shapiro-Wilk test on the background data gives a test statistic of SW = 0.947. The critical 
point at the α = .05 level for the Shapiro-Wilk test on n = 12 observations is 0.859. Since the 
test statistic exceeds the critical point, there is insufficient evidence to reject an assumption of 
normality. 

Step 2. Compute the prediction interval using the raw background data. The sample mean and 
standard deviation of the 12 background samples are 27.52 ppb and 17.10 ppb, respectively. 

Step 3. A single future year of compliance data then is compared to the prediction limit, leading to a 
test of m = 4 individual measurements. Setting the overall confidence level to (1−α)  = 95%, 
the probability used to determine an appropriate Student’s t-quantile needs to be set to  
( ) 9875.405.11 =−=− mα . The t-distribution with probability .9875 and (n–1) = 11 
degrees of freedom in Table 16-1 of Appendix D results in a t-quantile of 2.593. Using 
equation [18.3], the upper prediction limit can be computed as: 

 
  
PL = 27.52 + t.9875,11 17.10( ) 1+

1
12

= 27.52 + 2.593 17.10( ) 1.0833 = 73.67 ppb  

Step 4. Compare the upper PL to each compliance measurement in Year 4. None of the four 
observations exceeds 73.67 ppb. Consequently, there is no statistically significant evidence of 
arsenic contamination during that year. � 
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Although prediction limits are often constructed as bounds on extreme individual measurements, 
they can also be formulated to predict an acceptable range of concentrations for the mean of p future 
values. The comparison rule for the test is then different: instead of requiring all of a set of m individual 
values to fall within the prediction interval for the test to pass, only the average of the (p) future values 
should not exceed the prediction limit. 

In this setting, the prediction limit for a future mean is more nearly akin to a t-test or parametric 
ANOVA, since the mean of the compliance point well is compared to a limit based on the background 
mean. The principal differences in using a prediction limit as opposed to those tests are: first that the 
variability of the compliance point population is assumed to be identical to that in background. With a t-
test or ANOVA, each distinct well group contributes to the overall estimate of variability, not merely the 
background values. Secondly, t-tests and especially ANOVA are typically utilized as interwell tests, 
whereas prediction limits for a future mean can be constructed for either interwell or intrawell testing. 

The hypothesis being tested when using a prediction limit for a future mean in detection 
monitoring is exactly the same as that posited for a prediction limit for m future values, namely, H0: 
background population is identical to compliance population (implying µC � µBG) vs. HA: compliance 
mean is greater than background mean (i.e., µDG > µBG). However, the statistical properties of the two 
prediction interval formulations are somewhat different. 

For the same background sample size (n), false positive rate (α), and number of future samples 
where p = m, the power of the prediction limit for a future mean of order p with normally-distributed 
data is generally higher than for a prediction limit of the next m individual future observations. This 
suggests that when feasible and appropriately implemented, a prediction limit strategy based on future 
means may be more environmentally protective than a strategy based on predicting individual future 
measurements. A few examples of the power differences are presented in Figures 18-1 and 18-2. 
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Even when a retesting strategy is employed, such as the 1-of-m schemes for prediction limits on 
individual values described in Chapter 19, the statistical power at best matches that of a prediction limit 
on a single future mean with no retesting, when the same numbers of background and compliance point 
measurements are used. As Figure 18-2 illustrates, for some cases the 1-of-m power is comparatively 
lower. Under background conditions, 1-of-m strategies provide an earlier indication of uncontaminated 
groundwater, since a single observation can indicate uncontaminated groundwater.  By contrast, all p = 
m individual samples need to be collected to form a mean of order p = m when using a prediction limit 
test for a single future mean.  With a groundwater release, no such potential time savings exists.  In that 
case, all  p or m samples need to be collected with either type of prediction limit. 
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Although a prediction limit for a future mean is generally preferable in terms of statistical power 
for identifying potential contamination, it is not always practical to implement.  To accommodate the 
large number of statistical tests that all but the smallest sites must contend with, the Unified Guidance 
recommends that almost any prediction limit be implemented in conjunction with a retesting strategy 
(Chapter 19).  Otherwise, the prediction limit formulations provided in this chapter will likely fall short 
of providing an adequate balance between false negative and positive decision errors.  Retesting with a 
prediction limit for a future mean will necessitate the collection of p additional measurements to form 
the resampled mean, whenever the initial future mean exceeds the prediction limit.  Since all prediction 
limit tests assume that both the background and compliance data are statistically independent, there 
needs to generally be enough temporal spacing between sampling events to avoid introducing significant 
autocorrelation in the series of compliance point values. 
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If semi-annual evaluation of groundwater quality is required, and depending on data characteristics 
(see Chapter 14 discussions on temporal variability), there may not be sufficient time for collecting at 
least 4 independent groundwater measurements from a given well over a six-month period.  This would 
be the minimum needed to form an initial mean and potentially a resample mean of order 2.  To avoid 
this dilemma, the guidance discusses an alternate approach in Chapter 19 for using 1-of-1 prediction 
limit tests on means. 

Like the parametric prediction limit for m future values, the prediction limit on a future mean 
assumes that the background data used to construct the limit are either normally-distributed or can be 
normalized. If a transformation is used (e.g., the natural logarithm) and the limit built on the transformed 
values, the prediction limit should not be back-transformed before comparing to the compliance point 
data. Rather, because of transformation bias in the mean, the compliance point data should also be 
transformed, and the future mean computed from the transformed compliance measurements. Then the 
mean of the transformed values (e.g., log-mean) should be compared to the prediction limit in the 
transformed domain.  As previously mentioned, the prediction limit in the logarithmic domain is not a 
test of the arithmetic mean, but rather of the geometric mean or median (also see Chapter 16). In most 
situations, a decision that the lognormal median at the compliance point exceeds background will also 
imply that the lognormal arithmetic mean exceeds background. 

� ���������

Step 1. Calculate the sample mean, x , and the standard deviation, s, from the set of n background 
measurements. 

Step 2. Specify the order (p) of the mean to be predicted (i.e., the number of individual compliance 
observations to be averaged). If the background data are approximately normal and an upper 
prediction limit with confidence level (1−α) is desired, use the equation: 

 
  
PL = x + t1−α ,n−1s

1
p

+
1
n

 [18.7] 

 where it is assumed that an average of p consecutive sample values from the compliance point 
will be compared against PL. Note that the Student’s t-quantile used in the equation has two 
parameters: the degrees of freedom (n–1) and the cumulative probability (1−α). Most 
Student’s t-quantile values can be found directly or approximated through interpolation by 
using Table 16-1 in Appendix D. 

 Note also that equation [18.7] assumes that the prediction limit is applied to only one 
constituent at a single well. If multiple tests are to be conducted and a retesting procedure is 
employed, the prediction limit will take the form of equation [18.4] where the κ-multiplier is 
determined using the tables described in Chapter 19. 

Step 3. If a log transformation is applied to normalize the background sample, the upper PL on the 
log-scale should be constructed using the log-mean ( y ) and log-standard deviation (sy), using 
equation [18.8]: 
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PL = y + t1−α ,n−1sy

1
p

+
1
n

 [18.8] 

 Note that unlike the lognormal prediction limit for future values, the limit in equation [18.8] is 
not exponentiated back to the concentration domain. Also, equation [18.8] only applies to a 
single test (i.e., one constituent at a single well). If multiple tests are to be performed, the 
prediction limit will have the form: 

 
 
PL = y +κ sy  [18.9] 

 where the κ-multiplier is again determined from the tables described in Chapter 19. 

 Other transformations are handled similarly: construct the prediction limit on the transformed 
background, but do not back-transform the limit. 

Step 4. Once the limit has been computed, compare the compliance point mean against the prediction 
limit.  If the compliance point mean is below the upper PL, the test passes. If the mean 
exceeds the PL, there is statistically significant evidence of an increase over background. 

� ��(������
����

The table below contains chrysene concentration data found in water samples obtained from two 
background wells (Wells 1 and 2) and a compliance well (Well 3). Compute the upper prediction limit 
for a future mean of order 4 with 99% confidence and determine whether there is evidence of possible 
chrysene contamination. 
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Step 1. Before constructing the prediction limit, check the key assumptions. Assuming there is no 
substantial natural spatial variability and it is appropriate to combine the background wells 
into a single data pool, the algorithm for a parametric prediction limit presumes that the 
background data jointly originate from a single normal population. Running the Shapiro-Wilk 
test on the pooled set of eight background measurements gives SW = 0.7289 on the original 
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scale and SW = 0.8544 after log-transforming the data. Since the critical point for the test at 
the α = .10 level of significance is sw.10,8 =  0.851 (from Table 10-3 of Appendix D), the 
results suggest that the data should be fit to a lognormal model. The log-transformed statistics 
for the joint background and compliance well are also found in the above table. 

Step 2. Construct the prediction limit on the pooled and logged background observations. Then n = 8, 
the log-mean is 2.533, and the log-standard deviation is 0.706. Since there are 4 observations 
in the compliance well, take p = 4 as the order of the mean to be predicted. Then setting (1–α) 
= .99, the Student’s t-quantile with (n–1) = 7 degrees of freedom and cumulative probability of 
.99 is found from Table 16-1 in Appendix D to be 2.998. Using equation [18.8], the upper 
prediction limit on the log-scale is computed as: 

 
  
PL = 2.533+ 2.998( ) 0.706( ) 1

4
+

1
8

= 3.83 log(ppb)  

Step 3. Compare the log-mean of the chrysene measurements at Well 3 against the upper prediction 
limit. Since it is less than the limit, there is insufficient evidence of chrysene contamination at 
this well at the α = 0.01 significance level. � 
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Two basic remedies are available when a data set cannot be even approximately normalized, often 
due to the presence of a significant fraction of non-detects. If the sample includes left-censored data 
(e.g., non-detects), a fit to normality can be attempted using censored probability plots (Chapter 15) in 
conjunction with either the Kaplan-Meier or Robust Regression on Order Statistics [Robust ROS] 
techniques (Chapter 15).  If a reasonable normality fit can be found, a parametric prediction limit can be 
applied.  Otherwise, a non-parametric prediction limit can be considered. A non-parametric upper 
prediction limit is constructed by setting the limit as a large order statistic selected from background 
(e.g., the maximum or second-largest background value). 

As with their parametric counterparts, non-parametric prediction limits have an associated 
confidence level (1–�) which indicates the probability that the prediction interval [0, PL] will accurately 
contain all m of a set of m future values over repeated application on many similar data sets.  Unlike 
parametric limits, the confidence level for non-parametric limits is not adjustable. Despite being easily 
constructed for a fixed background sample size and the number of comparisons, the confidence level 
associated with the any maximal value used as the prediction limit is also fixed. To increase the 
confidence level, the primary choices are to decrease the number of future values to be predicted, or 
increase the number of background observations.   

If existing background can be supplemented with data collected from other background wells (e.g., 
in interwell testing), a non-parametric test confidence level can be increased.  Larger samples also 
provide a better characterization of site spatial variability. Unfortunately, it may always not be possible 
to supplement background. In these cases, another option to achieve a desired confidence level and 
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correspondingly control the false positive rate is to incorporate a retesting strategy as outlined in 
Chapter 19. 

Although non-parametric prediction limits do not require a presumption of normality, other 
assumptions apply equally to both parametric and non-parametric limits. Checks should be made of 
statistical independence, identical distributions (under the null hypothesis), and stationarity over time 
and space as discussed in Chapter 3 and Part II of the guidance. One particular caution for non-
parametric limits is that background should ideally be screened ahead of time for possible outliers, since 
the upper prediction limit may be set to the background maximum or second highest observed value. 
Unfortunately, this often cannot be accomplished with a formal statistical test. Outlier tests are rather 
sensitive to the underlying distribution of the data. If this distribution cannot be adequately determined 
due to the presence of non-detects, an outlier test is not likely to give reliable results. 

Instead of a formal test, it may be possible to screen for outliers using box plots (Chapter 12). 
Even with non-detects, the box plot ‘whiskers’ delineating the concentration range associated with 
possible outliers are computed from the sample lower and upper quartiles (i.e., the 25th and 75th 
percentiles), which may or may not be impacted by data censoring, or perhaps mildly so when 
computing the lower quartile. For large fractions of non-detects, the best that can usually be done is to 
identify a suspected outlier through close examination of laboratory results and chain-of-custody reports. 

One of two steps can be taken in the event a possible outlier is flagged.   If an error has occurred, it 
should be corrected before constructing the prediction limit.  If an error is merely suspected but cannot 
be proven, the prediction limit can be constructed as another order statistic from background instead of 
the maximum (e.g., the second largest value). This will prevent the suspected outlier from being adopted 
as the upper prediction limit without ignoring the possibility that it may be a real measurement. 
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Given n background measurements and a desired confidence level (1−α), a non-parametric 
prediction limit test for m future values is an m-of-m comparison rule.  All m future samples need to not 
exceed the upper prediction limit for the test to pass. Thus the procedure is an exact parallel to the 
parametric prediction limit for future values. Because the method is non-parametric, no distributional 
model needs to be fit to the background measurements. It is assumed that the compliance point data 
follow the same distribution as background under the null hypothesis — even if this distribution is 
unknown.  Although no distributional model is assumed, order statistics of any random sample follow 
certain probability laws which allow the statistical properties of the non-parametric prediction limit to be 
determined. 

Once an order statistic of the sample data (e.g., the maximum value) is selected as the upper 
prediction limit, Guttman (1970) has shown that the statistical coverage of the interval — that is, the 
fraction of the background population actually contained within the prediction interval — when 
constructed repeatedly over many data sets, has a beta probability density with cumulative distribution 
equal to  
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It j,n − j + 1( )=

Γ n + 1( )
Γ n − j + 1( )Γ j( )u=0

t

� u j−1 1− u( )n− j
du  [18.10] 

where n = sample size, j = (rank of prediction limit value), and ( ) ( ) ( ) ( ) 1221!1 ××−×−=−=Γ �nnnn  
denotes the gamma function. If the maximum is selected as the prediction limit, its rank is equal to n and 
so j = n. If the second largest value is chosen as the limit, its rank would be equal to (n−1) and so j = (n–
1).  The confidence probability for predicting that one future observation (i.e., m = 1) from a compliance 
well does not exceed the prediction limit is equal to the expected or average coverage of the non-
parametric prediction limit. 

Because of these properties, the confidence probability for a prediction limit on one future 
measurement can be shown to equal (1–α) = j/(n+1). If the background maximum is taken as the upper 
prediction limit, the confidence level thus becomes n/(n+1).  Gibbons (1991a) has shown that the 
probability of having m future samples all not exceed such a limit is (1–α) = n/(n+m). More generally, 
the same probability when the jth order statistic is taken as the upper prediction limit becomes (Davis 
and McNichols, 1999): 

 
( ) ( ) ( )
( ) ( ) ( ) ( )121
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1
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nnmnmn
jjmjmj

�

�α  [18.11] 

Table 18-1 in Appendix D lists these confidence levels for various choices of j, n, and m. The 
false positive rate (α) associated with a given prediction limit can be computed as one minus the 
confidence level. As this table illustrates, the penalty for not knowing the form of the underlying 
distribution can be severe. If a non-parametric prediction limit is to be used, more background 
observations are needed compared to the parametric setting in order to construct a prediction interval 
with sufficiently high confidence. As an example, to predict m = 2 future samples with 95% confidence, 
at least 38 background samples are needed. Parametric prediction intervals do not require as many 
background measurements precisely because the form of the underlying distribution is assumed to be 
known. 

It is possible to create an approximate non-parametric limit with background data containing all 
non-detects, by using the RL (often a quantitation limit) as the PL. A quantified value above the PL 
would constitute an exceedance.  A superior procedure is recommended in this guidance, using the 
Double Quantification Rule described in Chapter 6. 
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Step 1. Sort the background data into ascending order and set the prediction limit equal to the 
maximum, the second-largest observed value or another large background order statistic.  
Then use Table 18-1 of Appendix D to determine the confidence level (1–α) associated with 
predicting the next m future samples. 

Step 2. Compare each of the m compliance point measurements to the upper prediction limit [PL]. 
Identify significant evidence of possible contamination at the compliance well if one or more 
measurements exceed the PL. 
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Step 3. Because the risk of false positive decision errors is greatly increased if the confidence level 
drops substantially below a target rate of at least 90% to 95%, the actual confidence level (as 
identified by equation [18.11]) needs to be routinely reported and noted whenever it is below 
the target level. 

 Note that equation [18.11] assumes the prediction limit is applied to only one constituent at a 
single well. If multiple tests must be conducted and a retesting procedure is employed, the 
confidence level of the prediction limit must be determined using the tables described in 
Chapter 19. 
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Use the following trichloroethylene data to compute a non-parametric upper prediction limit for the 
next m = 4 monthly measurements from a downgradient well and determine the level of confidence 
associated with the prediction limit. 
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Step 1. Determine the background maximum and use this value to estimate the non-parametric 
prediction limit. In this case, the maximum value of the n = 18 pooled background 
observations is 12 ppb.  Set PL = 12 ppb. 

Step 2. Compare each of the downgradient measurements against the prediction limit. Since the value 
of 14 ppb for Month 6 exceeds PL, conclude that there is statistically significant evidence of 
an increase over background at CW-4. 

Step 3. Compute the confidence level and false positive rate associated with the prediction limit. 
Since four future samples are being predicted and n = 18, the confidence level equals n/(n + m) 
= 18/22 = 82%. Consequently, the Type I error or false positive rate is at most (1 − 0.82) = 
18% and the test is significant at the α = 0.18 level. This means there is nearly a one in five 
chance that the test has been falsely triggered. Only additional background data and/or use of a 
retesting strategy would lower the false positive rate. � 
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A prediction limit for a future median is a non-parametric alternative to a parametric prediction 
limit for a future mean (Section 18.2.2) when the sample cannot be normalized. In groundwater 
monitoring, the most practical application for this kind of limit is for medians of order 3 (i.e., the median 
of three consecutive measurement values), although the same procedure could theoretically be employed 
for medians of any odd order (e.g., 5, 7, etc.). The comparison rule in this case is that the test passes only 
if the median of a set of 3 compliance point measurements does not exceed the upper prediction limit. 
Note that this is also the same as a 2-of-3 test, whereby the well is deemed in compliance if at least 2 of 
3 consecutive observations fall within the prediction interval. Therefore, only 2 independent 
observations will generally be needed to complete the test at uncontaminated wells.  The third 
measurement will be irrelevant if the first two pass and so will not need to be collected. 

Given n background measurements and a desired confidence level (1−α), a non-parametric 
prediction limit for a future median involves a confidence probability that the median of the next p future 
observations will not exceed the limit. As noted in Section 18.3.1, order statistics of any random sample 
follow certain probability laws. In particular, the statistical coverage (C) of a prediction limit estimated 
by the jth order statistic (that is, the jth largest value) in background will follow a beta distribution with 
parameters j and (n+1–j). Following the notation of Davis and McNichols (1987), the conditional 
probability that the median of 3 independent future values will not exceed the non-parametric prediction 
limit can be shown to equal 

 
  
Pr Future median inbounds X j:n{ }= 3C2 − 2C3  [18.12] 

where Xj:n denotes that the prediction limit equals the jth largest order statistic in a sample of n 
observations and a conditional probability denotes the chance that an event will occur given the 
observance of another event (in this case, after having observed Xj:n). The (unconditional) confidence 
probability (1–α) can then be derived by taking the expected value of equation [18.12] with respect to 
the random variable C. Using standard properties of the beta distribution, this probability becomes: 

 
  
1− α =

3n − 2 j + 5( ) j + 1( )j

n + 3( ) n + 2( ) n + 1( )  [18.13] 

Thus the confidence level associated with a prediction limit for a future median of order 3 depends 
simply on the sample size of background (n) and the order statistic selected as the upper prediction limit 
(j). Table 18-2 in Appendix D provides values of the confidence level for various n and choices of the 
order statistic. Like the non-parametric prediction limit for m future values, ease of construction comes 
with a price.  More background measurements are required to achieve the same levels of confidence 
attainable via a parametric prediction limit for a future mean. For instance, to achieve 99% confidence in 
predicting a median of order 3 in a single test, at least 22 background observations are needed if the 
maximum is selected as the upper prediction limit, and at least 40 background observations are needed if 
the prediction limit is set to the second largest measurement. Parametric prediction intervals do not 
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require as many background samples precisely because the form of the underlying distribution is 
assumed to be known. 
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Once an order statistic (of rank j) is selected as the upper prediction limit, the confidence level is 
fixed by the number of background samples (n). The confidence level can only be increased by enlarging 
background. However, equation [18.13] is only applicable for the case of predicting a future median of a 
single constituent at a single well. To account for multiple tests and to incorporate a retesting strategy 
(both of which are usually needed), the specific strategies and tables of confidence levels presented in 
Chapter 19 should be consulted. 
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Step 1. Sort the background data into ascending order and set the upper prediction limit [PL] equal to 
one of the following: the background maximum, the second largest value, or another large 
order statistic in background. If the largest background measurement is a non-detect, set an 
approximate upper prediction limit as the RL most appropriate to the data (usually the lowest 
achievable quantitation limit [QL]). 

Step 2. Compute the median of the next three consecutive compliance point measurements. Compare 
this statistic to the upper prediction limit. Identify significant evidence of possible 
contamination at the compliance well if the median exceeds PL.  If PL equals the RL, identify 
an exceedance, if the median is quantified above the reporting limit. 

Step 3. Based on the background sample size (n), use Table 18-2 of Appendix D to determine the 
confidence level (1–α) associated with predicting the median of the next p = 3  future 
measurements. Because the risk of false positive errors is greatly increased if the confidence 
level drops much below a targeted rate of at least 90% to 95%, the actual confidence level (as 
identified in equation [18.13]) should be routinely reported and noted whenever it is below the 
target level. 

 Note that equation [18.13] assumes the prediction limit is applied to only one constituent at a 
single well. If multiple tests are conducted and a retesting procedure is employed, the 
confidence level of the prediction limit needs to be determined using the tables described in 
Chapter 19. 
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Use the following xylene background data to establish a non-parametric upper prediction limit for 
a future median of order 3. Then determine if the compliance well shows evidence of excessive xylene 
contamination. 
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Step 1. The maximum value in the set of pooled background measurements is 9.2. Assign this value 
as the non-parametric upper prediction limit, PL = 9.2. 

Step 2. Compute the median of the three compliance measurements. This statistic equals 7.8 ppb. 
Since the median does not exceed PL, there is insufficient evidence of xylene contamination at 
Well 4, despite the fact that the maximum at Well 4 is larger than the maximum observed in 
background. 

Step 3. Compute the confidence level and false positive rate associated with this prediction limit. 
Given that n = 24 and the order statistic selected is the maximum (i.e., j = n), use Table 18-2 
in Appendix D to determine that the confidence level for predicting a future median of order 3 
equals 99.1% and therefore the Type I error or false positive rate is at most 0.9%.  � 
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This chapter is a core part of the recommended statistical approach to detection monitoring. Even 
the smallest of facilities will perform enough statistical tests on an annual basis to justify use of a 
retesting strategy. Such strategies are described in detail in this chapter in conjunction with prediction 
limits. First, the Unified Guidance considers the concept and computation of site-wide false positive 
rates [SWFPR]. Then different retesting strategies useful for groundwater monitoring are presented, 
including: 

� Parametric prediction limits with retesting (Section 19.3), and 

� Non-parametric prediction limits with retesting (Section 19.4) 
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Retesting is a statistical strategy designed to efficiently solve the problem of multiple comparisons 
(i.e., multiple, simultaneous statistical tests). An introduction to multiple comparisons is presented in 
Chapter 6. At first glance, formal retesting seems little different than a repackaged form of verification 
resampling, a practical technique used for years to double-check or verify the results of initial 
groundwater sampling. Indeed, all retesting schemes are predicated on the idea that when the initial 
groundwater results indicate the presence of potentially contaminated groundwater, one or more 
additional groundwater samples should be collected and tested to determine whether or not the first 
results were accurate. 

The difference between formal retesting schemes and verification resampling found in the 
regulations is that the former explicitly incorporates the resample(s) into the calculation of the statistical 
properties of the overall test. A statistical “test” then needs to be redefined to include not only the 
statistical manipulation of the initial groundwater sampling results, but also that for any further 
resamples. Both the initial samples and the resamples are integral components of any retesting method. 

The principal advantage of retesting is that very large monitoring networks can be statistically 
tested without necessarily sacrificing either an acceptable false positive rate or adequately high effective 
power. Data requirements for a typical retesting scheme are often less onerous than those required for an 
analysis of variance (ANOVA). Instead of having to sample each well perhaps four times during any 
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given evaluation period,  many of the retesting strategies discussed below involve a minimum of one 
new sample at each compliance well.   Resamples are collected only at wells where the initial results 
exceed a limit, and no explicit post-hoc testing of individual wells is necessary as with ANOVA in order 
to identify a contaminated well. 

Since a statistical test utilizing retesting is not complete until all necessary resamples have been 
evaluated, it is important to outline the formal decision rules or scheme associated with each retesting 
strategy. Retesting schemes presented in the Unified Guidance fall into two types: 1-of-m and the 
modified California approach. The 1-of-m approach was initially suggested by Davis and McNichols 
(1987) as part of a broader method termed “p-of-m.” The 1-of-m scheme assumes that as many as m 
samples might be collected for a particular constituent at a given well, including the initial groundwater 
sample and up to (m–1) resamples. 

1-of-m schemes are particularly attractive as retesting strategies. If the initial groundwater 
observation is in-bounds, the test is complete and no resamples need to be collected.  Only when the first 
value exceeds the background prediction limit, does additional sampling come into play. For practical 
reasons, only 1-of-m schemes with m no greater than 4 are considered in the Unified Guidance. A 1-of-4 
retesting plan implies that up to 4 groundwater measurements may have to be collected at each 
compliance well, including the initial observation and 3 possible resamples.  For the test to be valid, all 
of these sample measurements need to be statistically independent. This generally requires that sufficient 
time elapses between resample collection so that the assumption of statistical independence or lack of 
autocorrelation is reasonable (see the discussion in Chapter 14). Because many groundwater evaluations 
are conducted on a semi-annual basis, three will generally be a practical upper bound on the number of 
independent resamples that might be collected. Thus the 1-of-2, 1-of-3, and 1-of-4 retesting schemes are 
included below. 

The second type of retesting scheme is known as the modified California approach. The decision 
rules for this test are slightly different from the 1-of-m schemes, although the test passes as before if the 
initial groundwater measurement is inbounds. If it exceeds the background limit, two of the three 
resample need to be inbounds for the test to pass. The modified California strategy thus requires a 
majority of the resamples to be inbounds for a compliance well test to be deemed ‘in bounds’. A 1-of-4 
scheme could have both the initial value and the first two resamples be out-of-bounds, yet pass the test 
with an inbounds result from the third resample.  Although the modified California test appears to be 
more stringent, the prediction limit for a 1-of-4 test under the same input conditions will be lower and 
hence be more likely to trigger single comparison exceedances.  With the prediction limits correctly 
defined, both will have identical false positive errors for any specific monitoring design.  The guidance 
also provides the same four non-parametric versions of the 1-of-m and modified California tests for 
future values. 

A useful variation on the 1-of-m retesting scheme for individual measurements is the 1-of-m 
strategy for means or medians. Instead of testing a series of individual values, a series of means or 
medians of order p is tested. The order of the mean or median refers to the number of individual 
measurements used to compute the statistic. For example, 1-of-2 retesting with means of order 2 requires 
that a pair of initial observations be averaged and the resulting mean compared against the background 
limit. If that initial mean is out-of-bounds, a second pair of observations (i.e., two resamples) would be 



��������	
����������������������������������� ���������������

� � ���������	�
	���

collected and averaged to form the resample mean. The test would fail only if both the initial mean and 
the resample mean exceeded the background limit. 

Retesting schemes for means or medians have steeper data requirements than retesting strategies 
for individual measurements and may not be practical at many sites. Nevertheless, the statistical 
properties (e.g., power and false positive rate) associated with the testing of means and medians are 
superior to comparable plans on individual observations. The Unified Guidance provides five mean 
retesting plans: 1-of-1, 1-of-2, or 1-of-3 for means of order 2; and 1-of-1 and 1-of-2 for means of order 
3.   The guidance also provides 1-of-1 and 1-of-2 tests of medians of size 3 as non-parametric options. 

These plans were chosen to limit the maximum possible number of distinct and independent 
sampling measurements per compliance well during a single evaluation period to six. In fact, the data 
requirements vary substantially by scheme. With means of order 2, the 1-of-1 plan requires a maximum 
of two new sample measurements; the 1-of-2 plan requires as many as four; while only the 1-of-3 plan 
might need a total of six. For means of order 3, the 1-of-1 plan requires three new measurements to form 
the single mean; the 1-of-2 plan might require up to six.  But for higher order 1-of-m mean or median 
tests, only the initial samples may be needed to identify a 'passing' test outcome under most background 
conditions. 

The three 1-of-1 mean and median plans provided in the guidance are technically not retesting 
schemes. The decision rule for these plans merely requires a comparison of a single mean or median 
against the background limit. If the initial mean or median comparison is inbounds, the test passes. If 
not, the test fails. The fact that each average is computed from multiple individual measurements implies 
that an implicit retest or verification resampling is built into these strategies. The statistical properties of 
the 1-of-1 plans can often be better than comparable 1-of-m schemes for individual values, with fairly 
similar sampling requirements. 

The Unified Guidance provides 1-of-1 and 1-of-2 non-parametric prediction limit tests for future 
medians of order 3.  By ‘median of order 3’, it means that the median or ‘middle value’ of a set of three 
consecutive sampling events. In the 1-of-2 case, the test passes if either the initial median is inbounds or, 
if not, when the resample median is inbounds. The 1-of-1 scheme does not involve any resampling, but 
does require at least two distinct sampling measurements to determine whether the initial median is 
inbounds.1 

As discussed in Chapter 6, proper design of a groundwater detection monitoring program will 
generally require an initial choice of a retesting scheme before future or compliance sampling data have 
been collected. As a practical matter, sample collection should be spaced far enough apart in time to 
ensure that any potentially needed resamples are statistically independent. Thus, the maximum number 
of resamples need to be known in advance in order to structure a feasible sampling plan for a particular 
retesting strategy.  Each retesting scheme also involves a different set of decision rules for evaluating the 
status of any given compliance well. The rules will determine how the background limit will be 
computed.  Given the same background sample and group of compliance wells, different retesting 
schemes lead to different background limits on the same data. 

                                                 

1 As noted in Chapter 18, the 1-of-1 retesting scheme for medians of order 3 is equivalent as a decision rule to a 2-of-3 
scheme for individual measurements. 



��������	
����������������������������������� ���������������

� � ���������	�
	���

If parametric prediction limits are used, the general formula for the limit introduced in Chapter 18 
is x +κs .  The �-multiplier and thus the prediction limit will vary depending on which 1-of-m or 
modified California plan is chosen. The �-multipliers also depend on the monitoring evaluation schedule 
in place at the facility. In typical applications, it is expected that the background sample used in 
statistical evaluations from any given year will either be static or substantially overlap from one 
evaluation to the next.  The same background observations are likely to be utilized or will substantially 
overlap if newer background data are added to the existing pool. Since at least a subset of the 
background measurements will be commonly employed in all the evaluations, there will be a statistical 
dependence exhibited between distinct evaluations (see Section 19.2 below). The number of evaluations 
per year against a common background will affect the correct identification of prediction limits. 
Consequently, the evaluation schedule (i.e., annual, semi-annual, quarterly) also needs to be known or 
specified in advance.2 
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As discussed in Chapter 6, the fundamental purpose of detection monitoring is to accurately 
identify a significant change in groundwater relative to background conditions. To meet this objective, 
statistical monitoring programs should be designed with the twin goals of ensuring adequate statistical 
power to flag well-constituent pairs elevated above background levels and limiting the risk of falsely 
flagging uncontaminated wells across an entire facility. The latter is accomplished by addressing the site-
wide false positive rate [SWFPR]. Both goals contribute to accurate evaluation of groundwater and to 
the validity of statistical groundwater monitoring programs. 

Retesting significantly aids this process of meeting both criteria.  However, it can be much easier 
to design and implement an appropriate retesting scheme if one understands how the SWFPR is derived.  
The SWFPR is based on the assumptions that no contamination is actually present at on-site monitoring 
wells, and that each well-constituent pair in the network behaves independently of other constituents and 
wells from a statistical standpoint.  If Q denotes the probability that a particular well-constituent pair will 
be falsely declared an exceedance (a false positive error), the probability of at least one such false 
positive error among r independent tests is given by: 

 
  
α = SWFPR = 1− 1− Q( )r

 [19.1] 

(1–Q) equals the chance that the test will correctly identify the well-constituent pair as ‘inbounds.’ The 
value of Q itself will depend on the type of retesting scheme being used. 

                                                 

2 The Unified Guidance distinguishes between the statistical evaluation (or testing) schedule and the sampling schedule. 
Regularly scheduled sampling events might occur quarterly, even though a statistical evaluation of the data only occurs 
semi-annually or annually. Further, resamples do not constitute regular sampling events, since they are only collected at 
wells with initial exceedances, but they are associated with the data for a particular evaluation. By separately identifying 
the evaluation schedule, there is 1) less confusion about the role of resamples in the testing process, and 2) opportunity to 
design monitoring programs, so as to allow for multiple individual observations to be collected prior to each evaluation. 
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Consider a 1-of-3 retesting plan for future observations.  A false positive at a given well-
constituent pair will be registered only if all three observations — the initial groundwater measurement 
and two resamples — exceed the background prediction or control limit.  If ω represents the probability 
that one of these observations exceeds the background limit, Q can be calculated as ω × ω × ω  (since 
the initial measurement and resamples are statistically independent) and the SWFPR as: 

 
  
α = SWFPR = 1− 1− ω 3( )r

 [19.2] 

By setting the target site-wide α equal to 0.10 and solving for ω, one could potentially compute the 
individual comparison false positive rate (αcomp  = ω) associated with any single comparison against the 
background limit.  This would identify the individual per-comparison confidence level (1 − αcomp) 
necessary to compute the background limit in the first place.3 If the background limit is computed as a 
prediction limit for the next single future measurement (i.e., m = 1 in a 1-of-m scheme), then ω equals 
the probability that a single new observation (independent of background) exceeds the prediction limit, 
and (1–ω) equals the confidence level of that prediction limit. Further, since ω can be obtained from 
equation [19.2] as: 

 
  
ω = 1− 1− α( )1/ r

3  [19.3] 

the upper prediction limit for a site involving 500 tests (for instance, 50 wells and 10 constituents per 
well) and 20 background samples could be computed using an individual, per-comparison confidence 
level of 

 
 
1− ω = 1− 1− 1− .10( )1/500

3 = 1− .0595 = 94.0%  

leading to a final prediction limit of 

 
  
PL = x + t.94,19s 1+

1
20

 

where  x  and s are the background sample mean and standard deviation. 

Unfortunately, certain statistical dependencies render the foregoing calculations somewhat 
inaccurate. Whether or not a resample exceeds the background limit for any constituent depends partly 
on whether the initial observation for that test also eclipsed the limit. This is because the same 
background data are used in the comparison of both the initial groundwater measurement and the 
resamples.  This creates a statistical dependence between the comparisons, even when the compliance 
point observations themselves are statistically independent. If the background data sample mean happens 
to be low relative to the true population mean, the background limit will tend to be low.  Each of the 
compliance point observations (whether the first measurement or subsequent resamples) will have a 

                                                 

3 Note that �comp does not represent the false positive rate for the complete 1-of-3 test, but is being treated for the sake of 
argument as a one of a series of 3 individual and independent tests. 
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greater than expected chance of exceeding it.  Likewise, if the background sample mean is substantially 
higher than the population mean, the background limit will tend to be high, resulting in a lower-than-
expected chance of exceedance for each of the compliance measurements. 

A similar dependence occurs for each well-constituent pair tested against a single background 
across evaluation periods (see discussions in Chapter 5 and Section 19.1).  A further dependence occurs 
when well-constituent pairs from many compliance wells are compared to a common interwell 
background.  The tests during each statistical evaluation again share a common (or nearly common) 
background, thus impacting the individual test false positive rate (�test) and the SWFPR (�) in turn. 
Three common evaluation strategies are considered in the Unified Guidance: quarterly, semi-annual, and 
annual. The SWFPR is computed on a cumulative, annual basis, with the assumption that background 
and the associated background limit will not be updated or recomputed (especially for intrawell tests) 
more often than every one to two years.4 

These dependencies between successive comparisons and tests against the background limit during 
retesting means that the derivation above will generally not result in a background limit with the targeted 
annual SWFPR of 10%. The actual false positive rate (�) will be somewhat higher and can be 
substantially higher if the background sample size (n) is small to moderate (say less than 50 samples). In 
part, this is because the correlation between successive comparisons against a common background limit 
is on the order of 1/(1+n). That is, the smaller the background size, the greater the correlation between 
the resamples and test comparisons.  The impact on the SWFPR is also greater if this dependence is 
ignored. 

Fortunately, as Gibbons (1994) has noted, the solution suggested in the previous example will be 
approximately valid for large background data sets (say n > 50), since then the correlation between 
successive resamples and/or tests is minimal. In fact, an approximate solution for the modified 
California and more general 1-of-m retesting schemes can also be derived. In the case of 1-of-m 
schemes, the probability Q of a false positive (for m = 1 to 4) is  ω

m , leading to a SWFPR of : 

 
  
α = SWFPR = 1− 1− ω m( )r

 [19.4] 

Solving for � in equation [19.4] leads to an approximate individual comparison false positive rate 
(�comp = �) of: 

 
  
ω = 1− 1− α( )1 r

m  [19.5] 

For the modified California plan, a false positive for a given well-constituent pair during a single 
evaluation will be registered only if both the initial measurement and at least two of three resamples are 

                                                 

4  Even with these assumptions, not all the statistical dependence will be accounted for at every site or for all constituents. 
Even when background is updated with new measurements, some of the already existing background values are likely to be 
used in re-computing the background limit. Some well-constituent pairs may be correlated, contradicting the assumption of 
independence between tests at the same well or for the same constituent at different wells. The Unified Guidance also does 
not presume to compute the SWFPR for other multi-year periods or for the life of the facility. 
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out-of-bounds (i.e., exceed the background limit). Consequently, the probability Q of a false positive for 
that pair may be expressed as: 

 
  
Q = ω 3ω 2 1− ω( )+ ω 3�

�
�
� = ω 3 4 − 3ω( ) [19.6] 

As before, ω represents the probability of any single observation exceeding the background limit.  Both 
the initial and any resample comparisons against the limit are assumed to be statistically independent. 
Given Q, the approximate overall false positive rate then becomes: 

 
  
α = SWFPR = 1− 1− ω 3 4 − 3ω( )�

�
�
�

r
 [19.7] 

Since ω will always be small in practice, one can usually ignore the term ω4 when expanding the right-
hand side of equation [19.7]. Then the approximate SWFPR becomes: 

 
  
α ≈ 1− 1− 4ω 3�

�
�
�

r
 [19.8] 

Leading to a solution for ω: 

 
  
ω ≈ 1− 1− α( )1 r

3 1
4

3  [19.9] 

which can again be used to construct a background limit for a single new observation. 

As an example, if the target SWFPR is 10% and one must test r = 200 comparisons using the 
modified California plan, ω would become: 

 
 
ω ≈ 1− .901/ 2003 1

4
3 = .0508 = 5.1%  

If the background limit is a prediction limit for the next future value, a confidence level of approximately 
94.9% would be needed to achieve the desired overall false positive rate of 10%.  This assumes that the 
background sample size is sufficiently large (say n > 50) to make the correlation between retests 
negligible.   In similar fashion, the respective single comparison error rates for the 1-of-2 through 1-of-4 
tests of future observations in this example would respectively be: � = .0229, .0808, and .1515. 
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The previous section highlighted certain dependencies in statistical tests due to comparisons of one 
or more samples or sample sets against a common background.  In the sitewide design of a facility 
detection monitoring system, the overall target design SWFPR is proportionately divided among all 
relevant tests conducted in an annual period.   Depending on the type of testing (e.g., interwell versus 
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intrawell, or a parametric versus non-parametric), the target error rates for a portion of the total set of 
potential tests may need to be calculated. 

Identifying false positive target rates is important when considering non-parametric prediction 
limit tests.  The cumulative target error rate for a group of annual tests against a single constituent is 
needed to compare with the achievable levels in Tables 19-19 through 19-24 in Appendix D.  The 
latter achievable rates take into account the dependencies previously discussed.  �-multiple Tables 19-1 
to 19-18 in Appendix D for parametric prediction limit tests have already made use of target false 
positive rate calculations which are generally not needed for identifying the appropriate multipliers.  The 
various dependencies against a common background are accounted for in the �-multiple tables to meet 
the nominal target rates.  R-script software  for certain parametric prediction limit tests discussed in a 
following section and in Appendix C also makes use of a target per-test false positive error rate as input. 

In assigning target rates, the Unified Guidance uses a basic subdivision principle which makes 
certain assumptions.  First and foremost, it is assumed that the total suite of tests can be subdivided into 
mutually exclusive, independent5 tests.   Each relevant annual statistical test is assigned the same single 
test error rate (�test).  Using the properties of the Binomial distribution, the target single test error rate can 
be obtained using equation [19.10] for r total annual tests.   The total number of annual tests r is the 
product of the number of compliance wells (w), the number of valid constituents (c), and the number of 
evaluations per year (nE) or r = w × c × nE, with � = SWFPR: 

 ( ) r
test

111 αα −−=  [19.10] 

Then a cumulative false positive rate can be assessed for any appropriate subset of tests. This 
principle would apply, for instance, if there is more than one regulated unit at a site and each regulated 
unit can be treated independently. A consistent portion of the overall targeted false positive rate � would 
be assigned to each regulated unit (�unit), using a rearrangement of equation [19.10].   If a facility with 
three units B, C, and D had 120 total annual tests (b + c + d = 120 = r), the cumulative target error rate 
for Unit B would be: ( )b

testUnitBa α−−= 11 and similarly for Units C and D.   These three cumulative 
error rates will approximately (but not exactly) sum to a total sitewide value close to the SWFPR.   
However, as joint independent tests taken together, the annual SWFPR is in fact exactly 10%.  The 
Bonferroni assumption makes use of the approximately linearity of such error rates for SWFPR 
calculations (discussed below). 

The ways in which the overall SWFPR might be partitioned will vary with each site, considering 
units, types of tests, number of wells, constituents and evaluations per year. If unit-specific cumulative 
false positive rates were established, the group of tests associated with each monitoring constituent 
within each unit might be separately considered.  Each group might potentially be further subdivided 
into intrawell versus interwell tests, or prediction limits versus control charts, etc., assuming a mixture of 
statistical methods is employed. By using the subdivision principle in a consistent way, the targeted 
SWFPR can be accurately maintained. 

                                                 

5  The Unified Guidance does not presume that every statistical test is in fact independent.  Tests or groups are treated as if 
independent, however, to allow the computation of nominal target false positive rates and/or to be consistent with 
regulatory constraints (e.g., all constituents must be tested separately). 
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One important use when calculating SWFPR rates is to account for multiple constituents.  In 
particular, non-parametric test theory is applied to only a single constituent at a time.  Since each 
constituent has its own set of background data and presuming the constituents behave independently of 
one another, the dependence caused by using a common background pertains only to those comparisons 
made against the background for that constituent. To clarify this concept, suppose a total set of r tests 
consists of c separate chemicals each monitored at w wells annually (i.e., r = c× w× nE and nE = 1). For 
each constituent, the dependence caused by a common background only applies to the w comparisons 
(one for each well) made for that monitoring parameter. This means that the overall target α = SWFPR 
needs to be apportioned into a fraction for each constituent, called the per-constituent false positive rate 
or �c. This can be done using the Binomial formula based on the single test error rate for w wells as: 

( ) Enw
testca ⋅−−= α11  or by partitioning the overall � to each constituent c: 

( ) c
c

111 αα −−=  

 The two calculations are equivalent under these conditions, with the latter equation somewhat 
easier to use. 

A similar situation occurs at sites requiring a combination of interwell and intrawell tests. 
Computation of the SWFPR can be appropriately handled using the basic subdivision principle. For 
interwell tests, measurements collected at each compliance well are compared against a common 
interwell background, creating a degree of statistical dependence not only between successive individual 
test comparisons (i.e., initial sample and any resamples) at a given well, but also between tests at 
different compliance wells. With intrawell tests, each well supplies its own background.  This implies 
that the component of between-well test dependence is eliminated, changing the way κ-multipliers for 
intrawell background limits with retesting are computed. 

For a given set of r well-constituent pairs, l tests to be conducted on an interwell basis, and the 
remaining (r – l) tests conducted as intrawell, two cumulative false positive rates need to be computed.  
The single test false positive error rate �test approach can be used: ( )l

testera α−−= 11int for the subset of l 

interwell tests, and ( ) lr
testraa −−−= α11int  for the subset of  r – l intrawell tests, in order to correctly 

maintain the SWFPR equal to α. A somewhat more direct approach can also be 
used: ( ) rl

er αα −−= 11int  for the  interwell tests and ( )( ) rlr
ra

−−−= αα 11int for the intrawell tests.   The 
two sets of equations are consistent. 

In general, the subdivision principle works as follows. If a group of r tests with targeted false 
positive rate, �, is divided into s distinct and mutually exclusive independent subsets, the false positive 
rate for each subset (�sub) can be computed as: 

 
  
α sub = 1− 1− α( )1 s

 [19.11] 
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The basic subdivision principle does not guarantee that the resulting detection monitoring program 
will have sufficient effective power to match the EPA reference power curve (ERPC). The foregoing 
calculations merely point to the correct overall false positive rate. 

As discussed in Section 6.2.2 of Chapter 6, a simpler approach would be to partition the overall 
SWFPR among a facility's annual number of tests, and can make use of the Bonferroni approximation.   
With low false positive rates characteristic of detection monitoring design, the total SWFPR can be 
divided by the number of annual tests for any of the various combinations of constituents, separate units, 
or interwell versus intrawell tests.  The Bonferroni approach results in slightly different false positive 
values than by directly using the Binomial formula, as described above. 

As an overall example, assume a facility with w = 20 wells monitored twice per year  (nE = 2)  for c 
= 8 constituents   Further, assume that 5 of the constituents can be monitored interwell and 3 need to be 
handled as intrawell comparisons.  Non-parametric prediction limits will be considered for all tests.  
Calculate the target cumulative false positive error rates for interwell and intrawell comparisons, with 
the SWFPR = � = .1. 

This site has a total of r = w×c×nE = 20×8×2 = 320 tests per year.  For the five interwell 
constituents, there are 20×2×5 = 200 tests, with 20×2×3 = 120  intrawell tests.  Each of the 5 interwell 
constituents will have 20×2 = 40 tests against a common background, while 2 semi-annual sample tests 
will be made against each of the 20×3 = 60 intrawell backgrounds. 

From equation [19.10], the single test false positive error rate is: ( ) r
test

111 αα −−=  

= ( ) 0003292.1.11 3201 =−− .  Each set of interwell constituent tests will have a cumulative false positive 

error rate �c for the 40 annual tests as: ( ) c
c

111 αα −−=  = ( ) 01308.1.11 81 =−− .  Note that all 8 
constituents are used in the equation, since the same false positive error rate is uniformly applied to all 
distinct subgroup tests.  The result can be obtained using the single test error rate equation: 

( ) ( ) 01308.0003292.1111 40 =−−=−−= ⋅ Enw
testca α .  This target value would be used to compare with 

achievable non-parametric test error rates for the same input conditions.  The cumulative interwell error 
rate for all five constituents can be calculated as: ( ) ( ) 06371.01308.1111 5

int =−−=−−= c
cera α . 

For the intrawell tests, the simplest approach uses the single test error rate for two tests: 
( ) ( ) 0006583.0003292.1111 21

int2 =−−=−−= ⋅⋅
−

Enw
testraa α .  This would be the cumulative error rate to 

consider with non-parametric intrawell tests.   The overall intrawell cumulative error rate for the sixty 
tests would then be: ( ) ( ) 03873.0006583.1111 60

int2int60 =−−=−−= ⋅
−−

cw
raraa α . 

If the two overall interwell and intrawell cumulative error rates were added, the sum is .1024, quite 
close to the nominal 10% SWFPR.   It is exactly that value when considered jointly.   By comparison the 
single test error rate using the Bonferroni approximation would be .1/320 = .0003125, while the exact 
Binomial value is .0003292.  The estimated interwell cumulative error for a single constituent would be 
40 times the single test value or .0125 (versus the calculated .01308).  For many non-parametric test 
considerations, these differences are relatively minor. 
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Upper prediction limits for m future observations and for future means were described in Chapter 
18. Applied to a network of statistical comparisons in detection monitoring, these procedures can be 
considered an extension to Dunnett’s multiple comparison with control [MCC] procedure (Dunnett, 
1955).  These procedures explicitly incorporate retesting that is applicable to a wider variety of cases 
than addressed by Dunnett. 

Retesting can be incorporated with either interwell or intrawell prediction limits. Depending on 
which approach is adopted, there is a distinct difference in the �-multipliers of the general prediction 
limit formula. In an interwell retesting strategy, there are at least two forms of statistical dependence that 
impact the SWFPR.  One is that each initial measurement or resample at a given compliance well is 
compared against the same background. A second is the dependence among compliance wells and 
number of annual evaluations, all of which are compared against a common upgradient background. In 
intrawell retesting, this second form of dependence is either essentially eliminated if there is only one 
annual statistical evaluation or else substantially reduced in the event of multiple evaluations.6  The 
remaining dependence is among successive resamples at each well. 

To account for the basic differences between interwell and intrawell prediction limit tests, an 
extensive series of tables is provided in Appendix D listing a wide combination of background sample 
sizes, numbers of wells, numbers of constituents, and distinctions between interwell and intrawell tests. 
In conjunction with an evaluation schedule (i.e., annual, semi-annual, or quarterly), these tables can be 
used to design and implement specific parametric retesting strategies in this chapter. All of the �-
multiplier tables for parametric prediction limits are structured to meet an annual SWFPR of 10% per 
year and to accommodate groundwater networks ranging in size from one to 8,000 total statistical tests 
per year.  The Unified Guidance tables are more extensive than similar tables in Gibbons (1994b). 
Further, each table is designed to indicate the effective power of the �-multiplier entries. 

If a particular network configuration is not directly covered in the Appendix D tables, two basic 
options are available. First, bilinear interpolation can be used to derive an approximate �-multiplier (see 
below for guidance on table interpolation). Second, the free-of-charge, open source, and widely available 
R statistical programming package (www.r-project.org) can be employed to compute an exact �-
multiplier. Further instructions and the two template codes used to compute the Unified Guidance �-
multiplier tables are provided in Appendix C.  After installing the R package, these template codes can 
be run by supplying specific parameters for the network of interest (e.g., number of wells, constituents, 
background sample size, etc.).  Some familiarity with properly installing a program like R is helpful.  
Appendix C explains how to execute a pre-batched set of commands.  No other technical programming 
experience is needed. 

                                                 

6  If multiple evaluations occur each year, new compliance samples each evaluation period are tested against the common 
intrawell background. 
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The basic assumptions of parametric prediction limits were described in Chapter 18. These 
include data that are normal or can be normalized (via a transformation), lack of outliers, homogeneity of 
variance between the background and compliance point populations, absence of trends over time, 
stationarity, and statistical independence of the observations. 

The Unified Guidance provides separate �-tables for interwell and intrawell limits. One of these 
approaches should be justified before computing prediction limits. To use interwell prediction limits, 
there should be no significant natural spatial variation among the mean concentrations at different well 
locations. Otherwise, a prediction limit test could give meaningless results, since average downgradient 
levels might naturally be higher than background even in the absence of a contaminant release. The 
assumption of spatial variability should therefore be checked using the methods in Chapter 13. 

While intrawell testing eliminates the problem of natural spatial variability, intrawell background 
often is developed using the first n samples from each compliance point well. Since historical data from 
compliance wells need to be utilized to do this, these groundwater measurements should be 
uncontaminated. The number of intrawell background samples available may also be rather limited.  n 
will tend to be initially small prior to any updating of background. Such constraints will limit the 
intrawell retesting schemes that can both minimize the SWFPR yet maintain effective power similar to 
the ERPCs. 

  One possible way to overcome this limitation is to estimate a pooled standard deviation across 
many wells along the lines suggested by Davis (1998). Such a calculation is no more difficult than a one-
way ANOVA (Chapter 13) for identifying on-site spatial variability. The mean squared error [MSE] 
component of the F-statistic in ANOVA gives an estimate of the average per-well variability.  To the 
extent that mean levels vary by well location but the population standard deviation does not, a one-way 
ANOVA can be run on a collection of wells (both background and compliance) to estimate the average 
within-well variance, and hence, the common intrawell standard deviation (see Chapter 13 for further 
details and examples). 

Instead of a standard deviation estimate based solely on intrawell background at a single well with 
its attendant limits in size and degrees of freedom, the mean concentration level can be estimated on a 
well-specific basis, while the standard deviation is estimated utilizing a collection of wells leading to 
much larger degrees of freedom. Although the intrawell background size for a given well might be small 
(e.g., n = 4 or 8), the κ-multiplier used to construct the prediction limit is based on both the effective 
sample size (i.e., degrees of freedom plus one) and the intrawell sample size (n). 

The pooled standard deviation for intrawell comparisons can be utilized if the population standard 
deviation is approximately constant across wells. Many data sets may not appear so initially; however, 
any transformation to normality must first be taken into account. The standard deviation is only assumed 
to be constant on the transformed scale. Furthermore, once any transformation is applied, the collection 
of wells should explicitly be tested for homogeneity of variance using the tools in Chapter 11. Only if 
the assumption of equal variances across wells seems reasonable should the pooled standard deviation 
estimate be used. 
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With little or no spatial variability among well locations, an interwell test might be considered.  
However, the sample standard deviation (s) computed from background may not adequately estimate 
true background variability. This can happen when there is a temporal component to the variability 
affecting all wells at a site or regulated unit in parallel fashion, or when there is a significant degree of 
autocorrelation between successive samples. 

A random, temporal component to the variability can result from changes to the laboratory 
analytical method or field sampling methodology, periodic re-calibration of lab instruments, or other 
sample handling or preparation artifacts that tend to impact all observations collected during a given 
sampling event. Such a temporal component can sometimes be identified through the use of parallel time 
series plots (Section 14.2.1) or through a one-way ANOVA using time-of-sampling as the factor 
(Section 14.2.2). Results of the ANOVA can be used to derive a better estimate of the background 
population standard deviation (σ), along with adjusted degrees of freedom for use in constructing the 
upper prediction limit (see Chapter 14 for further details and an example). 

When autocorrelation is present, methods to adjust the standard deviation estimate and degrees of 
freedom entail possibly modeling the autocorrelation function.  This issue is beyond the scope of the 
Unified Guidance and consultation with a professional statistician is recommended.  The most practical 
way to avoid significant autocorrelation between samples is to allow enough time to lapse between 
sampling events. Precisely how much time will vary from site to site, but Gibbons (1994a) and others 
(for instance, American Society for Testing and Materials, 2005) recommend that the frequency of 
sampling be no more frequent than quarterly. Alternatively, a pilot study can be run on two or three wells 
with the sample autocorrelation function estimated from the results (Sections 14.3.1 and 14.2.3). The 
minimum lag (i.e., time) between sampling events at which the autocorrelation is effectively zero can be 
used as an appropriate sampling interval. 

� �������*���&�����������������������������������

The Unified Guidance provides tables of �-multipliers for both interwell and intrawell prediction 
limits with retesting. It also provides separate tables for predicting individual future values versus future 
means. Four distinct retesting schemes are presented in the case of prediction limits for individual 
values: 1-of-2, 1-of-3, 1-of-4, and the modified California plan schemes. Five distinct schemes are 
presented for the case of future means: 1-of-1, 1-of-2, and 1-of-3 for means of order 2, and 1-of-1 and 1-
of-2 for means of order 3. 

Both the Appendix D interwell retesting tables (Tables 19-1 through 19-9) and the intrawell 
retesting tables (Tables 19-10 through 19-18) are similarly structured.  Separate sub-tables are provided 
for a range of possible monitoring constituents (c = 1 to 40) and for each of the retesting schemes 
mentioned above. Each table is divided into three parallel sections, one section applicable to annual 
statistical evaluations, one to semi-annual evaluations, and one to quarterly evaluations. Within each 
section, κ-multipliers are listed for all combinations of background sample size (from n = 4 to 150) and 
number of wells (from w = 1 to 200). These κ-multipliers are computed to meet a target annual SWFPR 
of 10%, as discussed in Chapter 6. 

The Appendix tables also list those �-multipliers which achieve adequate effective power 
compared to the ERPCs. The �-multipliers are bolded when the effective power consistently exceeds the 
appropriate ERPC for mean level increases above background of 3 or more standard deviations 
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(designated as ‘good’ power). The multipliers are italicized and shaded when the effective power is 
somewhat less, but still consistently exceeds the ERPC at mean level increases of 4 or more standard 
deviations above background (designated as ‘acceptable’ power). Non-bolded, non-italicized entries 
achieve the target SWFPR, but have low power. 

To use the tables, certain key statistical parameters should be known or identified. These include 
whether the prediction limit tests are interwell or intrawell, the evaluation schedule (annual, semi-
annual, or quarterly), the number of constituents (c), the size of the background sample (n), and the 
number of compliance wells to be tested (w). In the interwell case, it is presumed that there are n 
(upgradient) background measurements for each constituent (c). The listed �-multiplier would then be 
applied to each of c prediction limits, one for each monitoring constituent. The intrawell case presumes 
that there are n well-specific background measurements designated at each well-constituent pair, thus 
giving w × c separate sets of intrawell background. Here, the �-multiplier would be applied to each of w 
× c distinct prediction limits. 

In situations where a mixture of test types is needed (e.g., intrawell testing for some constituents, 
interwell for others), the Unified Guidance tables can still be employed. The �-multipliers are computed 
to apportion an equal share of the overall cumulative SWFPR to each of the w × c tests that need to be 
run during a given statistical evaluation. Because of this fact, if r of the constituents are analyzed using 
interwell tests, but (c – r) of the constituents are handled using intrawell limits, correct prediction limits 
can be developed by first selecting an interwell �-multiplier based on all c constituents, and then 
selecting an intrawell �-multiplier also based on c constituents. This will ensure that the target SWFPR 
is met, although each multiplier is respectively applied only to a subset of the monitoring list. 

Some background samples might be of different sizes, either for different constituents or at distinct 
wells (e.g., when using intrawell background). Again the Unified Guidance tables can be inspected to 
select a different �-multiplier for each distinct n. However, each multiplier should be chosen as if the 
background sample sizes were equal for all w × c tests. Thus, while a multiplier based on n1 background 
observations is applied only to those tests involving that sample size, it should be selected from the 
Appendix D tables as if it will be applied to all the tests. 

For network configurations not listed in Tables 19-1 to 19-18 in Appendix D, an appropriate �-
multiplier can be estimated using bilinear interpolation. Such interpolation will be fairly accurate as long 
as adjacent table entries are used, representing the closest values to the desired combination of number 
of wells (w) and background sample size (n). 

In general, to calculate a �w*, n* , where w* and n* are the desired input points that lie between the 
closest table entries as: w1 < w* < w2  and n1 < n* < n2, first calculate the fractional terms: 

   ( )
( )12

1*
ww
ww

fw −
−=    and   

( )
( )12

1*
nn
nn

fn −
−=  

The interpolated �-multiplier can then be computed as: 

( )( ) ( ) ( )
22211211 ,,,,**, 1111 nwnwnwnwnwnwnwnwnw ffffffff κκκκκ ⋅⋅+⋅⋅−+⋅−+⋅−−=    [19.12]  
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 For example, suppose a �-multiplier is needed for a 1-of-3 interwell prediction limit test for 
individual values using an annual evaluation schedule.  Assume the monitoring network consists of c = 5 
constituents monitored at w = 28 compliance wells, using n = 17 upgradient background measurements 
on which to base the prediction limit. From Table 19-2 in Appendix D, the closest table entries, �,w ,n to 
the desired combination are �20,16 = 1.59, �30,16 = 1.70, �20,20 = 1.52, and �30,20 = 1.62. The interpolated 
value, �25,18, can then be found using the equations in [19.12]: 
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Important considerations in designing a reasonable retesting scheme for detection monitoring are 
discussed in Chapter 6. Given a background sample and a particular network configuration and size, 
parametric 1-of-m plans tend to increase in statistical power as the order of m increases. All of the 
schemes have greater power with larger background sample sizes (n). Furthermore, plans involving 
prediction limits for future means tend to be more powerful than similar plans using prediction limits for 
individual observations. So if the �-multiplier for a particular plan is not bolded or italicized, another 
plan can be sought to achieve sufficient effective power using more resamples or perhaps changing to a 
mean prediction limit. Alternatively, the background sample size might need to be augmented if feasible, 
prior to implementing the retesting procedure. 
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The advantages to using a prediction limit for future individual values include: 1) the ability to 
explicitly control the SWFPR across a series of well-constituent pairs; and 2) greater flexibility than that 
provided by prediction limits for future means (Section 19.3.2) to handle temporal autocorrelation. In 
those cases when the sampling frequency needs to be reduced to maximize statistical independence of 
the observations, the method can be applied to evaluations of a single new measurement (plus possible 
resamples) at each compliance point well. 

To properly implement a prediction limit strategy for future values with retesting, it needs to be 
feasible to collect 2 to 4 independent measurements at each compliance well during a given evaluation 
period.  All initial and any resamples are assumed to be statistically independent and thus should exhibit 
no autocorrelation. 

If statistical evaluations are done annually, it may be possible to collect data on a quarterly basis 
and meet the minimal sampling requirements of any of the resampling schemes discussed in the Unified 
Guidance. However, more frequent evaluations (say semi-annual or quarterly) will require that new 
samples be collected perhaps monthly or every six weeks. In these cases, explicit tests for 
autocorrelation may need to be conducted before adopting a 1-of-m retesting scheme with m > 2 or a 
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modified California plan. If significant autocorrelation is identified, the sampling frequency may need to 
be reduced and/or an alternate strategy utilizing fewer resamples may need to be adopted instead. 

� ����������

Step 1. Identify the overall targeted annual false positive rate (SWFPR = � = 0.10). Determine the 
number of wells (w) to be monitored and the number of constituents (c) to be sampled at each 
well. Also determine whether the evaluation schedule at the unit or facility is annual, semi-
annual or quarterly. 

Step 2. Decide on the number of observations (m) to be predicted. To incorporate retesting, a 
maximum of two independent measurements should be collected from every compliance well 
during each evaluation period to use a 1-of-2 retesting scheme, three independent 
measurements if a 1-of-3 plan is desired, and four independent measurements if either a 1-of-4 
plan or a modified California plan is employed. 

Step 3. For interwell prediction limits given a background sample of n measurements, compute the 
background sample mean ( x ) and standard deviation (s) for each constituent. Then, based on 
the evaluation schedule (annual, semi-annual or quarterly), c, n, w,  and the specific retesting 
scheme chosen, use Tables 19-1 to 19-4 in Appendix D to determine a κ-multiplier 
possessing acceptable statistical power. Interpolate within the tables to find the closest 
multiplier if an exact value is not available. 

 For intrawell prediction limits, designate n early measurements as intrawell background for 
each well-constituent pair; compute the intrawell background mean ( x ) and standard 
deviation (s) for each case. Given the evaluation schedule, c, n, w, and the chosen retesting 
scheme, use Tables 19-10 to 19-13 in Appendix D to determine an acceptably powerful �-
multiplier. Note: if the intrawell background sample size varies by well, a series of �-
multipliers should be computed, one for each distinct n. 

For each �-multiplier, calculate the upper prediction limit with (1– �) confidence as: 

   PL1−α = x +κ s  [19.13] 

 If data were transformed prior to constructing the prediction interval, back-transform the 
prediction limit before making comparisons against the compliance point data. Unlike a 
prediction limit for future means, the formula for predicting m future values does not involve 
any transformation bias if the comparison is made in the original measurement domain. 

Step 4. Collect an initial measurement from each well-constituent pair being tested. Compare each 
value against either 1) the upper prediction limit based on upgradient background in the 
interwell case or 2) the intrawell prediction limit specific to that well-constituent pair. 
Depending on the retesting scheme chosen, if any initial compliance point concentration 
exceeds the limit, collect 1 to 3 additional resamples at that well. If feasible, analyze only for 
those constituents which exhibited initial exceedances.  Compare these values sequentially 
against the upper prediction limit. If the test ‘passes’ prior to collection of all the scheduled 
resamples, the remaining resamples do not need to be gathered or compared against PL. 
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Step 5. Decide that the test at a given well passes (i.e., the well is in-compliance) if any one or more 
of the resamples does not exceed PL when using a 1-of-m scheme or when at least 2 resamples 
do not exceed PL when using the modified California scheme. Identify the well as failing 
when either (1) all resamples using a 1-of-m plan also exceed the prediction limit, or (2) at 
least two of three resamples using a modified California plan exceed PL. 
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A large hazardous waste facility with 50 compliance wells is to monitor 10 naturally-occurring 
inorganic parameters in addition to 30 non-naturally occurring volatile organic compounds that have 
never been detected on-site. Groundwater evaluations are performed on a semi-annual basis. If the 
regulating authority will allow up to two resamples per exceedence of the background concentration 
limit, construct an interwell prediction limit with adequate statistical power and false positive rate 
control on the following pooled set (n = 25) of background sulfate measurements. 
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Step 1. Assume for purposes of the example that there are no significant spatial differences among the 
well locations, either upgradient or downgradient. A check of normality of the pooled 
background sulfate measurements indicates that the interwell prediction limit should be 
constructed on the logged sulfate measurements rather than the raw concentrations. 
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Step 2. Groundwater evaluations must be conducted semi-annually (S). By excluding never-detected 
organic chemicals from the SWFPR calculation, the number of constituents that are to be 
considered is c = 10 at each of w = 50 wells. 

Step 3. Since a maximum of two resamples will be allowed during any given evaluation period, 
neither the 1-of-4 nor the modified California retesting plan are an option. Consequently, only 
a 1-of-2 or 1-of-3 retesting strategy is appropriate. With n = 25 background measurements, 
Tables 19-1 and 19-2 in Appendix D should be examined for a semi-annual evaluation 
schedule to determine �-multipliers with adequate power. The multiplier of κ = 2.75 for a 1-
of-2 plan has ‘acceptable’ power compared to the semi-annual ERPC, but the multiplier of κ = 
2.00 for a 1-of-3 plan has ‘good’ power. Use the latter value to construct the interwell 
prediction limit. 

Step 4. The sample log-mean and log-standard deviation of the sulfate background measurements are 

  y = 4.32 and sy = 0.376, respectively. Use these values and the �-multiplier to compute the 
prediction limit on the log-scale as 

 
  
PL = y +κ sy = 4.32 + 2.00 × 0.376 = 5.072  

 Then exponentiate the limit to back-transform it to the original measurement domain, for a 
final sulfate prediction limit of PL = e5.072 = 159.5 mg/l. 

Step 5. Compare the final prediction limit against one new sulfate measurement from each of the 50 
compliance point wells. For any exceedence, compare the first of two resamples to the 
prediction limit. If the limit is still exceeded, test the second resample. If all three 
measurements (initial plus two resamples) are above the prediction limit at any specific well, 
declare that a statistically significant exceedence for sulfate has been identified. If, however, 
neither of the resamples exceeds the limit, judge the evidence to be insufficient to declare the 
well to be out-of-compliance. � 
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Due to significant natural spatial variability, an intrawell testing scheme needs to be adopted at a 
solid waste landfill that monitors for 5 inorganic constituents at each of 10 compliance wells. If only one 
year’s worth of quarterly sampling data is available at each well, but no recent contamination is 
suspected, develop an appropriate modified California intrawell retesting plan for the following chloride 
measurements.  Assume that one statistical evaluation must be conducted each year. 
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Step 1. With c = 5 constituents, w = 10 wells, one annual evaluation, and an intrawell background size 
for each well of only n = 4, Table 19-13 in Appendix D can be examined to locate a possible 
κ-multiplier, leading to an interpolated κ = 4.33. Although this multiplier will adequately 
control the annual SWFPR to 10% or less, it yields low power for identifying contamination. 
As an alternative, try computing a pooled standard deviation across the compliance wells for 
chloride. 

Step 2. Side-by-side box plots (Section 11.1) of the chloride values exhibit no obvious differences in 
spread or variation. The F-statistic for Levene’s test (Section 11.2) is also non-significant (F = 
1.0673) at the α = 5% level, suggesting that the variances are not unequal and that a pooled 
standard deviation can be appropriately formed. 

Step 3. Conduct a one-way ANOVA on all chloride measurements from the 10 compliance wells, 
using Wells as the main factor (Section 13.2.2). The ANOVA table is presented below. 
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Step 4. Compute the square root of the Error Mean Squares (also called the root mean squared error 
or RMSE) component in the ANOVA table to derive an estimate of the pooled intrawell 
standard deviation of sp = 10.568. This estimate of the average intrawell variation has 30 
degrees of freedom [df], computed by multiplying (4–1) = 3 degrees of freedom per well times 
the number of wells, or df = 3 × 10 = 30. 

Step 5. The Appendix D tables are not used to derive �-multipliers when a pooled standard deviation 
estimate is used for intrawell prediction limits.  R script listed in Appendix C is used (see 
Section 13.3). For a modified California retesting strategy with n = 4 and df = 30, the κ-
multiplier becomes κ = 1.98.7 This value not only controls the SWFPR but also has good 
statistical power. So use this multiplier along with the pooled intrawell standard deviation to 
compute an intrawell prediction limit for each compliance well. As an example, since the 
mean for chloride at well GW-09 is 28.5, the intrawell prediction limit would be: 

   PL = 28.5 + 1.98 × 10.568 = 49.4 mg/l  

 Prediction limits for the other compliance wells would be computed similarly. � 
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The background, requirements, and assumptions for a prediction limit on future means of order p 
are essentially identical to those for prediction limits for future values (Section 19.3).  For a comparable 
level of sampling effort, predicting a future mean offers increased effective power compared to a strategy 
that uses prediction limits for individual future values.  To properly implement a prediction limit strategy 
for future means with retesting, it must be feasible to collect 2 to 6 independent measurements at each 
compliance well during a given evaluation period.  All initial and resample measurements are assumed 
to be statistically independent. 

To include explicit retesting, it should be feasible to collect either 2p or 3p independent 
measurements per well during each evaluation. The initial p observations are used to form the initial 
mean, while the remaining values are used to form either one or two resample means. If statistical 
evaluations are done annually, it may be possible to collect quarterly data and meet the minimal 
sampling requirements for p = 2 and a 1-of-2 retesting scheme. For more frequent semi-annual or 
quarterly evaluations, a larger order p or a retesting scheme entailing two resample means will require 
that new samples be collected perhaps monthly or every six weeks. An explicit test for autocorrelation 
should be made before adopting the strategy presented here. If significant autocorrelation exists, the 
frequency of sampling may need to be reduced and alternate prediction limit strategies considered such 
as a 1-of-1 plan for a future mean (see Section 19.1) or  individual future values (Section 19.3.1). 

                                                 

7 The EPA Region 8 approximation equation described in Chapter 13, Section 13.3 provides a �-multiple estimate of 1.99 
for individual wells at n = 4.  The annual �-factor for w = 10 and c =5 and n = 31 in Table 19-13 of Appendix D is 
interpolated as � = 1.508.   Using the appropriate A, b & c coefficients from Chapter 13, Note 2 for the modified California 
plan, results are quite close to that generated from R-script. 
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An important difference between testing means versus individual values is that in some cases it 
may not be necessary to implement a retest at all. As noted above, for the same degree of sampling 
effort, a prediction limit for a mean of two or more observations can provide greater effective power than 
a prediction limit for the same number of individual values, even if a resampled mean is not collected. In 
other words, when a 1-of-2 retesting plan for individual observations is compared to a 1-of-1 plan for 
means of order 2, the 1-of-1 mean-based scheme generally has greater power for identifying real 
concentration increases if background samples sizes are n > 10 (compare �-multiple power ratings at 
higher n, c, and w in Tables 19-1 and 19-5 of Appendix D)  A similar comparison holds between a 1-of-
3 retesting plan for individual observations and a 1-of-1 plan for a mean of order 3 (Table 19-2 versus 
Table 19-8 in Appendix D). 

Even more powerful prediction limits for future means are possible when explicit retesting is 
added to the procedure. However, the minimum sampling increases substantially. With a 1-of-2 retesting 
plan for means of order 2, as many as four independent groundwater measurements needs to be collected 
and analyzed per evaluation period. With a 1-of-3 plan for means of order 2 or a 1-of-2 plan for means 
of order 3, the sampling increases to as many as six independent observations per period.   The latter 
plans may only be feasible for a single annual evaluation. 

A problem common to all future mean prediction limits arises if the data have to be normalized via 
a transformation. In this case, all comparisons need to be made on the transformed data in order to avoid 
a transformation bias. As a consequence, the procedure is not a direct test of the background and 
compliance point arithmetic means.  The test is still valid as a measure of significant mean differences in 
the transformed domain (e.g., a test of geometric mean differences for logarithmic data).   To the extent 
that the populations being compared share a common variance in the transformed domain, it may also 
indicate that a significant difference on the transformed scale also corresponds to a significant difference 
in the arithmetic means of the original populations. 

A final potential drawback is that although a 1-of-m plan for future observations and a 1-of-1 plan 
for means of order p = m seem to require the same total sampling effort, a prediction limit for 
observations can actually entail less sampling. For a future mean test of order p = m, m individual 
measurements will always need to be collected and analyzed. With a prediction limit for individual 
observations, the first sample is analyzed and compared to the limit. If it passes (i.e., does not exceed the 
limit) there is no need to test the second or subsequent observations. Any subsequent resample that 
passes, also indicates that no further resample comparisons are needed for that test.    

Under typical conditions at a site where most or all tested well-constituent pairs are likely to be at 
background conditions, there is a substantial savings in the number of samples for future observations 
versus means of the same size.  It can also be noted that the same principle is true for a 1-of-2 test of a 
mean of order 2.  Under background conditions, the two initial mean samples may be all that is required.  
When groundwater is contaminated, both the 1-of-m retesting plan for observations and the 1-of-1 plan 
for a mean of order p = m require exactly the same amount of sampling and analysis to identify a 
significant exceedance.  
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Step 1. Identify the number of wells (w) to be monitored and the number of constituents (c) to be 
sampled at each well. Also identify the evaluation schedule as annual (A), semi-annual (S), or 
quarterly (Q). 

Step 2. Decide on the order (p) of the future mean to be predicted. To incorporate retesting, it needs to 
be possible to collect 2p independent samples during each evaluation period to use a 1-of-2 
retesting scheme, or 3p independent samples if a 1-of-3 plan is desired. 

Step 3. If an interwell prediction limit is needed, use the common sample of n (upgradient) 
background measurements to compute the background sample mean ( x ) and standard 
deviation (s). Given the n background measurements, w, c, p, and the evaluation schedule 
(annual, semi-annual or quarterly), use Tables 19-5 to 19-9 in Appendix D to determine a �-
multiplier possessing acceptable statistical power.  Calculate the upper prediction limit on 
background as: 

  PL = x +κs  [19.14] 

 If intrawell prediction limits are needed, designate n early measurements at each compliance 
well as intrawell background. Compute the background sample mean ( x ) and standard 
deviation (s) for each well. Then, based on n, w, c, p, and the number of evaluations per year, 
use Tables 19-14 to 19-18 in Appendix D to determine an adequately powerful �-multiplier. 
Compute an intrawell prediction limit for each compliance well using equation [19.14]. Note: 
if the intrawell background sample sizes vary by well, a series of �-multipliers will need to be 
identified in these Appendix D tables, one for each distinct n. 

If the background data were transformed prior to constructing the prediction limit, also 
transform any compliance point data before making comparisons against the prediction limit. 
In particular, compute the comparison mean of order p using the transformed values, rather 
than transforming the sample mean of the raw concentrations.  

Step 6. Collect p initial measurements from each compliance well. Compute the mean of order p for 
each well, first transforming the data if necessary using the same function applied to 
background. Then compare each mean against the upper prediction limit. If retesting is 
desired, for any compliance point mean that exceeds the limit, collect either p or 2p additional 
resamples at that well, depending on the retesting scheme chosen. Form either one or two 
resample means of order p from these data; compare these means sequentially to the upper 
prediction limit. 

Step 7. Identify the well as potentially contaminated when either 1) the initial mean of order p exceeds 
the limit in a 1-of-1 plan, or 2) the initial mean and all resample means using a 1-of-2 or 1-of-
3 plan also exceed the prediction limit. Deem the well to be in-compliance if either 1) the 
initial mean does not exceed the prediction limit, or 2) any of the resample means do not 
exceed the limit. 
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Suppose a large facility with minimal natural spatial variation is to monitor for 20 separate 
naturally-occurring inorganic chemicals along with a number of other never detected organic 
constituents. If 100 compliance wells are to be tested every six months and 25 background sample 
measurements are available, which resampling plans can control the SWFPR, providing acceptable 
statistical power? Assume that the data for each inorganic compound can be normalized and that the 
temporal autocorrelation between successive samples at the same well is minimal, provided that no more 
than four samples are collected during any semi-annual period. 

� ���������

Step 1. The frequency of statistical evaluations is semi-annual (S). Excluding never-detected 
compounds from the SWFPR calculation leaves c = 20 constituents that need to be explicitly 
tested at each of w = 100 wells. For each of these constituents, since the data can be 
normalized, assume that an interwell prediction limit can be constructed using n = 25 
background measurements. 

Step 2. Determine κ-multipliers and power ratings for seven possible prediction limit retesting plans 
excluding the 1-of-3 mean order 2 and the 1-of-2 mean order 3 tests. Use the sub-tables 
identified as "20 COCs, Semi-Annual" for n =25 and w = 100 in interwell Tables 19-1 through 
10-9 in Appendix D, to obtain the following:  

��������������������� κκκκ*%���������� ������ +�������������
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Step 3. Compare the various plans in terms of statistical power and typical sampling effort. The only 
plan with low power is the 1-of-2 scheme for observations.  The 1-of-1 mean order 2 has 
acceptable power. The other plans all have good power (i.e., ones consistently meeting or 
bettering the ERPC for mean-level increases above background of 3 or more standard 
deviations), but potentially require either 2 or 3 resamples. 

Restricting attention to those with good power, the least potential sampling effort is required 
by the 1-of-1 plan for a mean of order 3 or a 1-of-3 plan for observations. These two plans 
would requires less total sampling than the 1-of-4 plan for observations, the 1-of-2 mean order 
2 plan and the same or less sampling than the modified California plan for observations in 
identifying a contaminant release. 

 If groundwater is not contaminated, the 1-of-m plans for observations require a minimum of 1 
measurement to demonstrate that the well is in-bounds (i.e., when the initial measurement 
does not exceed the background limit) as does the modified California plan. The 1-of-2 plan 
for a mean of order 2 requires a minimum of 2 measurements, and the 1-of-1 plan for a mean 
of order 3 requires a minimum of 3 measurements.  On balance, the 1-of-3 plan for individual 
observations or the 1-of-2 plan for a mean of order 2 may provide the best compromise 
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between minimizing sampling effort and offering a higher probability of identifying 
contaminated groundwater. � 

� ��*������
	���

Use the chloride data of Example 19-2 to compute and contrast prediction limits for a future mean 
of order 2, with and without explicit retesting. Assume as before that 10 wells are monitored for 5 
inorganic constituents, and evaluated on an annual basis. 
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Step 1. The chloride data in Example 19-2 showed significant spatial variability, suggesting the use 
of intrawell prediction limits. Furthermore, a one-way ANOVA evaluation of the w = 10 
compliance wells indicated that a pooled standard deviation estimate of sp = 10.568 with 30 
degrees of freedom could be used to build intrawell prediction limits, instead of using 
individual variance estimates from each compliance well. 

Step 2. With c = 5 constituents, w = 10 wells to be monitored, one annual evaluation (A), and a 
pooled degrees of freedom of df = 30, the R script in Appendix C can be repeatedly run to 
determine �-multipliers for each retesting scheme for prediction limits on means of order 2.  
Since the sample size for each of the 10 wells is the same n = 4, the following multiples were 
generated from the R-script  for the 1-of-1 to 1-of-3 tests of mean order 2: � = 2.68, 1.88 and 
1.51, respectively.8 The prediction limits can then be constructed using equation [19.15], as 
shown for the first five compliance wells in the table below. 

 
 
PL = x +κ sp  [19.15] 

Step 3. While the power of each retesting plan is rated ‘good’ compared to the annual-evaluation 
ERPC, the prediction limits are obviously higher when less (or no) explicit retesting is 
conducted. Depending on conditions at the site, the range of approximately 13 mg/l of chloride 
in the well-specific prediction limits may or may not be important in deciding which strategy 
to use. The 1-of-1 plan for a mean of order 2 requires fewer total samples than the other plans. 
In some situations, the higher initial limits may be outweighed by the savings in sampling cost. 

 On the other hand, the ERPC provides a minimal standard for assessing statistical power. 
There can be a range of power curves even among plans all rated as ‘good’ seen in Figure 19-
1 below, where the full effective power curves for these three strategies are presented. Clearly, 
the 1-of-2 and 1-of-3 plans for means of order 2 have visibly higher power than the 1-of-1 
retesting scheme. If site conditions permit, it may be beneficial to incorporate the 1-of-2 plan 
as a reasonable compromise between the gain in statistical power versus the increase in 
sampling requirements (for contaminated wells). � 

                                                 

8  Using the Region 8 approximation equation in Chapter 13, the corresponding �-multiples were 2.69, 1.89 and 1.52, 
respectively, based on tabular values at n = 31 of 2.258, 1.364 & .946 and using the appropriate A, b & c coefficients for 
each test.   Results are very comparable to the R-script values. 
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When parametric prediction limits are not appropriate, either due to a large fraction of non-detects 
or data that cannot be normalized, retesting can be conducted using non-parametric prediction limits. 
The Unified Guidance discusses retesting schemes for both individual future values and for future 
medians (in parallel to the parametric options discussed in Section 19.3). Tests on individual 
observations include the three 1-of-m plans and modified California plan approaches. Tests on future 
medians include the 1-of-1 and 1-of-2 plans for medians of order 3. The basic strategy is to establish a 
non-parametric prediction limit for each monitoring constituent based on background measurements so 
that it accounts for the number of well-constituent tests in the overall network. Instead of determining a 
κ-multiplier, a non-parametric limit is computed as an order statistic from the background sample.  The 
term order statistic refers to one of the values in a sorted (or ordered) data set. 

In order to maintain adequate statistical power while minimizing the overall false positive rate, 
retesting will almost always be needed as part of the detection monitoring system design. As in the 
parametric case, a specific number of additional, independent resamples will potentially need to be 
collected for each compliance well test. The initial and subsequent resamples are then compared against 
the non-parametric prediction limit. 

The largest or second-largest value in background is often selected as a non-parametric limit, 
representing the nth or (n–1)th order statistics.  With higher level 1-of-m tests of observations, an even 
lower order statistic may be more appropriate in achieving an optimal balance between the desired 
SWFPR and adequate statistical power.  This can be particularly true if the background sample size is 
large, but depends on the overall network design requirements.  Although the Unified Guidance provides 
tables of non-parametric limits only for the largest and second-largest order statistics, EPA Region 8 has 
released software written in Visual Basic® labeled the Optimal Rank Values Calculator that computes 
the optimal choice of order statistic for 1-of-m retesting plans for m = 1 to 4.  The program also provides 
approximate statistical power estimates based on user inputs of a target cumulative false positive rate, 
background sample size, and number of simultaneous tests to be conducted.  The software and 
explanatory narrative will be provided on the EPA website.9 
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When more independent data are added to the testing procedure, retesting with non-parametric 
prediction limits leads to more powerful and more accurate assessments of possible contamination. As 
with parametric retesting schemes, a balance must be struck between 1) quick identification and 
confirmation of contaminated groundwater and 2) statistical independence of successive resamples.  All 
retesting strategies depend on the assumption of statistical independence between successive resamples.  
This trade-off is typically resolved by allowing enough time between resamples to allow both the well to 

                                                 

9  The calculator, an accompanying narrative, fact sheet and this guidance will be located on the EPA website: 
http://www.epa.gov/hazard/correctiveaction/resources/guidance/sitechar/gwstats/index.htm.  If the calculator cannot be 
accessed, contact Mike Gansecki for assistance (e:mail:  gansecki.mike@epa.gov; or phone: 303- 312-6150.) 
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recharge and additional groundwater to flow past the well screen, and by limiting the number of possible 
resamples to 2 or 3. 

Non-parametric retesting schemes offer somewhat less flexibility than their parametric 
counterparts. As with other non-parametric statistical intervals, the same SWFPR control afforded by a 
parametric interval based on a small n cannot usually be attained in a non-parametric interval; larger 
sample sizes are almost always necessary. κ-multipliers for parametric prediction limits are continuous 
statistical parameters that can be adjusted to match a desired false positive rate for even the smallest 
sample sizes.  By contrast, the bounds of non-parametric intervals are restricted to values in the observed 
background sample.  For a given sample size and number of tests to be run, any order statistic selected 
from background as the non-parametric prediction limit results in a discrete probability of false positive 
error. Altering the prediction limit by selecting a different order statistic changes the false positive rate 
only in discrete probability steps, providing a less efficient means of controlling the SWFPR. 

The non-parametric prediction limit tests provided in the Unified Guidance do not require the 
underlying distribution to be normal.   One potentially attractive application is for background data sets 
containing higher percentages of non-detects which cannot be normalized.  For some constituent data 
sets, it may be possible to pool data from several upgradient and historical compliance wells to generate 
much larger total background sizes.  A non-parametric Kruskal-Wallis test of medians can establish that 
these data are appropriate for pooling.  

Since larger background sample sizes are needed because no distributional model is posited, the 
non-parametric testing schemes are most applicable to interwell comparisons.  Small intrawell 
background sample sizes make it difficult for any of the non-parametric test options to be applied which 
can meet the SWFPR cumulative false positive design objective. Unlike parametric intrawell tests, 
effective sample sizes cannot be expanded by estimating a common pooled standard deviation across a 
number of wells. This conclusion is generally true no matter what order statistic is used to estimate the 
non-parametric prediction limit.   But there are other considerations which might allow intrawell testing 
using non-parametric alternatives.  For a given sample size, target false positive, a fixed maximum and 
number of total tests, the higher 1-of-m tests of future observations will have lower achievable false 
positive errors, with the 1-of-4 test the lowest.  If the background sample size is increased through 
periodic additions, this false positive will continue to drop.   The power of these tests using the 
maximum with small sample sizes is almost always greater than the EPA reference levels.   A temporary 
strategy might be to utilize the highest order 1-of-m test for intrawell purposes until larger sample sizes 
are available.  However, the target cumulative false positive rate may not initially be met.  With larger 
sample sizes, it may also be possible to decrease the m of the test and still achieve the target false 
positive rate.  

Even interwell comparisons between upgradient and downgradient wells are acceptable only if the 
degree of spatial variability is insignificant. Fortunately, spatial variability may be less of a problem in 
those cases where a non-parametric retesting scheme might be implemented, i.e., when the detection rate 
of the chemical being monitored is fairly low. High constituent non-detect rates tend to result in more 
uniform spatial distribution across site wells, allowing for similar median concentrations.
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To design appropriate non-parametric prediction limits with retesting, the Unified Guidance 
provides separate tables for predicting individual future values versus future medians. Four distinct 
retesting schemes are presented in the case of prediction limits for individual values: 1-of-2, 1-of-3, 1-of-
4, and modified California plan schemes. Two distinct schemes are presented for the case of future 
medians: 1-of-1 and 1-of-2 for medians of order 3. 

Unlike the tables for parametric prediction limits discussed in Section 19.3, non-parametric 
prediction limits do not involve �-multipliers. Instead, the entries in Tables 19-19 to 19-24 of Appendix 
D  consist of per-constituent significance levels. These levels represent the achievable false positive rate 
(�const) associated with each tested constituent for a given retesting scheme, choice of non-parametric 
prediction limit, and network configuration (i.e., number of wells [w] and background sample size [n]).10 
The non-parametric prediction limit can be estimated via any order statistic from the background sample. 
However, the most practical limits are usually either the maximum observed background value or the 
second-highest value. Consequently, the Unified Guidance provides tables for these two options. 

Each table for the six specific non-parametric tests contains two sub-tables.  One uses a limit based 
on the background maximum and the other the second-highest background value.  All the tables are 
otherwise similarly structured. Within each table and sub-tables, per-constituent significance levels are 
given for all combinations of background sample size (n = 4 to 200) and number of wells (w = 1 to 200). 
These significance levels can be used to meet a target annual SWFPR of 10%, discussed in Chapter 6. 

Correct use of these tables involves a few important considerations. First, if an interwell prediction 
limit is desired, the target per-constituent false positive rate (�const) needs to be computed. Any 
prediction limit strategy selected should have a table entry no greater than �const in order to ensure that 
the annual SWFPR is no greater than 10%. To compute this target rate, use the formula: 

 
  
αconst = 1− 1− α( )1 c

 [19.16] 

where c equals the number of monitoring constituents and � is the SWFPR = 0.10. 

Unlike the tables for parametric prediction limits, separate tables are not provided for each of the 
three most common evaluation schedules (i.e., annual, semi-annual, and quarterly).  The number of 
'wells' in each non-parametric table must be regarded as the actual number of compliance wells (w) times 
the number of annual statistical evaluations (nE = 1, 2, or 4).  For using these tables, let w* = w × nE. 
This adjustment is necessary because on each evaluation, w wells should be compared against a 
prediction limit computed from a common interwell background. A site with w* wells tested annually is 
statistically equivalent to a site having w distinct well locations tested nE times per year (w × nE tests). 

                                                 

10  Per-constituent rates instead of network-wide false positive rates are given in these tables and those of Davis and 
McNichols (1994; 1999) for computational reasons. Although the mathematical algorithm is exact, it is difficult to compute 
with accuracy for a large number of tests (r). Hence the decomposition of r into constituents (c) times wells (w). By 
calculating the per-constituent false positive rate, only the number of wells (w) need be varied. 
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Once w* is computed in this way, the table entry corresponding to w* and n represents the 
achievable annual false positive rate per constituent. As noted, this rate should not exceed the target rate 
(�const) in order to meet the overall SWFPR.  If �const is exceeded for a given choice of retesting scheme 
and choice of non-parametric prediction limit, a different limit or scheme should be considered. In 
general, selecting a 1-of-m retesting scheme with larger m will lead to a lower achieved false positive 
rate. Also, per-constituent significance levels for the modified California approach are generally larger 
than those for the 1-of-m plans. 

If intrawell prediction limits are needed, a somewhat different method needs to be employed to 
correctly use the per-constituent significance levels in Tables 19-19 through 19-24 of Appendix D.  In 
this case, a target per well-constituent pair false positive rate (�w�c) needs to be first computed using the 
equation: 

 ( ) ( )cw
cw

⋅
⋅ −−= 111 αα  [19.17] 

where � is the SWFPR, w equals the actual number of compliance wells and c is the number of 
monitoring constituents.  Then the placeholder w* for the non-parametric tables is  to be equated with 
the number of annual statistical evaluations (w* = nE = 1, 2, or 4).  w* represents the number of times 
per year that the common intrawell background at any given well-constituent pair will be compared 
against new compliance measurements from that well. The table entry corresponding to w* and the 
intrawell background sample size n may be regarded as the achievable false positive rate per well-
constituent pair. This rate should not exceed the target rate, �w-c, if the overall SWFPR is to be met. 

The same approach presented in Section 19.3 is used if a mixture of test methods is needed (e.g., 
parametric prediction limits for some constituents, and non-parametric limits for other constituents).  By 
construction, the target SWFPR is evenly proportioned across the list of monitored constituents.  As long 
as the significance level per constituent (interwell case) or per well-constituent pair (intrawell case) is 
computed using all c constituents and not just those for which a non-parametric prediction limit test will 
be applied, the SWFPR will not exceed α = 0.10 on an annual basis. 

Tables 19-19 through 19-24 in Appendix D provide the same bold, italicized or plain text used to 
identify 'good', 'acceptable' and 'low' power ratings following the ERPC 3 and 4 standard deviation 
reference criteria as in the parametric prediction limit tables. 

As final technical notes about these tables, the significance levels listed as table entries are 
presented using a short-hand notation in order to compactly present a wide range of false positive rates. 
In this notation, the first four non-zero digits of the significance level are given, followed if necessary, by 
the symbol –d.  The value d represents the number of leading zeros to the right of the decimal point. This 
is equivalent to taking the non-zero portion of the entry and multiplying it by 10–d to get the actual 
significance level.  As an example, if the entry is .4251–4, the equivalent significance level is 
.00004251. Entries without the –d symbol are the actual fractional significance levels where no 
adjustment is needed. 

For network configurations (number of wells [w] and background sample size [n]) not listed in 
Tables 19-19 through 19-24 in Appendix D, bilinear interpolation can be used to approximate the 
significance level associated with the desired configuration.  As discussed in Section 19.3, interpolation 
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should be restricted to the closest four adjacent table entries.  The shorthand significance level notations 
in the tables should first be converted to actual fractions before interpolating. 

 


	���
 ������������ ������������� ������

� &��(�������������)����������

The Unified Guidance recommends two variations of non-parametric prediction limits for use in 
groundwater detection monitoring. The first is the prediction limit for individual future values, 
introduced in Section 18.3.1. The other is the prediction limit for future medians, detailed in Section 
18.3.2. Basic requirements for non-parametric prediction limits are outlined in those sections. 

The main advantage to a prediction limit for future values is its overall flexibility and ease of 
implementation. Fewer data from each compliance well are needed to implement the test compared to a 
prediction limit for a future median.  Only an initial observation from each compliance point may be 
needed to identify a well-constituent pair 'in-bounds'; initial exceedances can be followed by up to a 
maximum of three additional individual resamples. Once the non-parametric upper prediction limit has 
been selected from background as a large order statistic (often the maximum or second-largest value), 
each compliance point measurement is compared directly against this upper limit. 

The user should decide which retesting scheme to use and how many resamples per well are 
feasible, given that the measurements from any well during a given evaluation period need to be 
statistically independent. Tables 19-19 through 19-22 in Appendix D can be employed to compare the 
achievable false positive rates of different schemes and to determine whether they exhibit adequate 
effective power. The user can also explore EPA Region VIII’s Optimal Rank Values Calculator software 
to consider order statistics other than the maximum or second-largest. 

� ����������

Step 1. For an interwell test, use the number of monitoring constituents (c) in equation [19.16] to 
determine the target per-constituent false positive rate (�const). Also multiply the number of 
yearly statistical evaluations (nE) by the actual number of compliance wells (w) to determine 
the look-up table entry, w*.  Then depending on the background sample size n and w, choose a 
type of non-parametric prediction limit (i.e., maximum or 2nd highest value in background) 
and a retesting scheme for individual observations using Tables 19-19 through 19-22 in 
Appendix D.  The final plan should have an achieved significance level no greater than αconst 
and also should be labeled with ‘acceptable’ or ‘good’ power in the Appendix tables. 

Step 2. For an intrawell test, use the number of constituents (c) and the actual number of compliance 
wells (w) in equation [19.17] to compute the target significance level per well-constituent pair 
(�w-c). Set w* in the look-up table equal to the number of yearly evaluations, nE. Based on w* 
= nE and the intrawell background sample size n, choose a non-parametric prediction limit and 
retesting scheme so that the achieved well-constituent pair significance level (i.e., the selected 
table entry) does not exceed the target significance level, �w-c, and also is labeled with 
‘acceptable’ or ‘good’ statistical power. 
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Step 3. Sort the background data into ascending order and set the upper prediction limit equal to an 
appropriate order statistic of the data (e.g., the maximum or the second-largest observed 
value). If all constituent measurements in a background sample are non-detect, use the Double 
Quantification rule in Chapter 6.  The constituent should not be included in calculations for 
identifying the target false positive. 

Step 4. Collect one initial measurement per compliance well. Then compare each initial measurement 
against the upper prediction limit. Depending on the retesting scheme chosen, for any 
compliance point value that exceeds the limit, collect one to three additional resamples from 
that well.  Again compare the resamples against the upper prediction limit. 

Step 5. Identify any well with an initial exceedance as potentially contaminated when either (1) all 
resamples using a 1-of-2, 1-of-3, or 1-of-4 plan also exceed the prediction limit, or (2) at least 
two resamples exceed the limit using a modified California retesting scheme. Conversely, 
declare a well to have ‘passed’ the test if either 1) the initial measurement does not exceed the 
prediction limit, 2) any resamples from a 1-of-m scheme do not exceed the limit, or 3) at least 
2 of 3 resamples from a modified California approach do not exceed the limit. 
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Prediction limits for a future median based on either a single or with one repeat (1of-1 or 1-of-2 
tests) are two non-parametric procedures recommended as retesting methods in the Unified Guidance. 
Compared to a prediction limit for future individual values, the prediction of a median (Chapter 18) 
often requires more data to be collected from each compliance well particularly if resampling is 
included. Slightly greater statistical manipulation is also needed once the data are in hand. For the 1-of-1 
test, the initial median to be predicted requires at least two initial observations from each compliance 
point, and any resample medians will require additional sets of up to three measurements, all of which 
needs to be statistically independent. 

Given equal amounts of data and the same input conditions, a prediction limit for a future median 
tends to be more statistically powerful than a prediction limit for individual values. This is true whether 
one uses a fixed order statistic or selects across a range of order statistics to form the prediction limit. 
Because of this and the fact that both spatial variability and autocorrelation may be less of a problem (or 
at least less easily assessed) when the detection rate is low and a non-parametric strategy is needed, the 
Unified Guidance includes Appendix D tables for both a 1-of-1 scheme and a 1-of-2 scheme to predict 
medians of order 3.  The 1-of-2 median test will have a lower achievable false positive rate than the 1-
of-1 version, with all other conditions equal. 

Depending on the number of annual evaluations and the test configuration, care needs to be taken 
that potentially needed samples are far enough apart in time.  The series of observations from any well is 
assumed to be uncorrelated.  If autocorrelation is a problem, a prediction limit for future values (Section 
19.4.1) should be considered in which the per-well sampling requirements with explicit retesting are 
more modest. 
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Step 1. For an interwell test, use the number of monitoring constituents (c) in equation [19.16] to 
determine the target per-constituent false positive rate (�const). Also multiply the number of 
yearly statistical evaluations (nE) by the actual number of compliance wells (w) to determine 
the look-up table margin value, w*. Then, depending on the background sample size n and w*, 
choose a type of non-parametric prediction limit (i.e., maximum or 2nd highest value in 
background) and a retesting scheme for future medians using Tables 19-23 to 19-24 in 
Appendix D. The final plan should have an achieved significance level no greater than αconst, 
and also should be labeled with ‘acceptable’ or ‘good’ power in the Appendix tables. 

Step 2. For an intrawell test, use the number of constituents (c) and the actual number of compliance 
wells (w) in equation [19.17] to compute the target significance level per well-constituent pair 
(�w-c). Set w* in the look-up table margin equal to the number of yearly evaluations, nE. Based 
on w* = nE and the intrawell background sample size (n), choose a non-parametric prediction 
limit and retesting scheme for future medians so that the achieved well-constituent pair 
significance level (i.e., the selected table entry) does not exceed the target significance level, 
�w-c, and also is labeled with ‘acceptable’ or ‘good’ statistical power. 

Step 3. Sort background into ascending order and set the upper prediction limit equal to a large 
background order statistic (e.g., the maximum or second largest value).  If all constituent 
measurements in a background sample are non-detect, use the Double Quantification rule in 
Chapter 6.  The constituent should not be included in calculations identifying the target false 
positive rate. 

Step 4. Collect two initial measurements per compliance well. If both do not exceed the upper 
prediction limit, the test passes since the median of order 3 will also not exceed the limit. 
There is no need to collect the third initial observation or any resamples. If both exceed the 
prediction limit, the median will also exceed the limit. There is no need to collect the third 
initial measurement. If using a 1-of-1 plan, move to Step 5. Otherwise, collect up to three 
resamples in order to assess the resample median. 

 If one initial measurement is above and one below the limit, collect a third observation to 
determine the position of the median relative to the prediction limit. In all cases, if two or 
more of the compliance point observations are non-detect, set the median equal to the  
quantification level (QL).  

Step 5. Compare the median value for each compliance well against the upper prediction limit. If a 1-
of-2 retesting scheme is selected and any compliance point median exceeds the limit, collect 
up to three additional resamples from that well. Compute the resample median and compare 
this value to the upper prediction limit. 

 Identify a compliance well as potentially contaminated when either the initial median exceeds 
the upper prediction limit for a 1-of-1 plan, or both the initial median and the resample median 
exceed the prediction limit in a 1-of-2 plan. Conversely, declare a well to have passed the test 
if the initial median does not exceed the prediction limit, or the resample median in a 1-of-2 
scheme does not exceed it. 
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The following trace mercury data have been collected in the past year from a site with four 
background wells and 10 compliance wells (two of which are shown below). The facility must monitor 
for five constituents, including mercury. Assuming that the percentage of non-detects in background is 
too high to make a parametric analysis appropriate or feasible, compare interwell non-parametric 
prediction limits for both observations and medians at the annual statistical evaluation, and determine 
whether either compliance well indicates significant evidence of mercury contamination.  Further 
assume that the sequentially reported compliance well data below are obtained as needed for the 
different test comparisons. 
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Step 1. Using a target SWFPR of 10%, compute the target per-constituent false positive rate, noting 
that the monitoring list consists of five parameters. This implies that 

( ) 021.1.11 51 =−−=constα  using equation [19.16]. Since the detection rate in background is 
only 35%, it is reasonable to consider non-parametric prediction limits with retesting. The 
background sample size of n = 20 is to be used to construct an interwell prediction limit for all 
w = 10 compliance wells. Since there is only one annual evaluation (nE = 1), the look-up table 
margin value of w* equals w × nE = 10. 

Step 2. Determine potentially applicable retesting plans. First consider non-parametric prediction 
limits for individual observations with n = 20 and w = 10. Consulting Tables 19-19 through 
19-22 in Appendix D, only the 1-of-3, 1-of-4, and modified California plans meet (i.e., do not 
exceed) the target false positive rate of 2.1%. To use the 1-of-3 or modified California plans, 
the prediction limit needs to be set to the maximum background measurement. In the 1-of-4 
plan, the prediction limit can be set to either the maximum or second-highest value in 
background using the Appendix D tables. A final 1-of-4 plan determined with the Optimal 
Rank Values Calculator allows the use of the 3rd highest value. All of these plans boast good 
power compared to the annual ERPC.  Both the 1-of-4 and modified California schemes may 
require as many as 3 separate and independent resamples in addition to the initial observation. 

 Consider tests for future medians of order 3 in Tables 19-23 and 19-24 in Appendix D.  Only 
the 1-of-2 plan using the maximum background value as the prediction limit meets the αconst 
target. It also has good power, but requires 3 initial measurements and up to 3 additional 
individual resamples. 
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Step 3. Sort the combined background data and compute the possible prediction limits as PL(n) = .28 
ppb, PL(n–1) = .25 ppb, and PL(n–2) = .24 ppb, respectively representing the maximum, second-
largest, and third-largest background values. 

Step 4. Determine the test outcomes at each compliance well using the various retesting plans, as 
shown in the table below. For the prediction limits on individual observations, the first sample 
collected during Event 1 is used as the initial screen to determine if any resampling is 
necessary. The first 3 measurements at each compliance well are used to form the initial 
comparison.  The median at CW-1 is .20 ppb, while that at CW-2 is .41 ppb. 
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All of the acceptable plans indicate that CW-1 is not statistically different from background, 
although more initial sampling is required for the 1-of-2 retesting plan with medians. For CW-
2, the results are more problematic. The 1-of-3 and 1-of-4 plans based on the maximum 
background value allow the well to pass, while the other four plans indicate a significant 
difference from background. The least degree of sampling is required by the 1-of-3 plan; at 
some facilities, greater sampling efforts may not be feasible. When a well is likely to be 
contaminated, the number of samples required to actually make a decision about the well is 
similar across the plans with the exception of the 1-of-2 prediction limit on a median. 

A further consideration is that although the power of each plan exceeds the annual ERPC 
when additional resampling is possible, it is helpful to compare the full power curves of 
multiple plans to determine whether a particular plan offers greater power than the rest. Figure 
19-2 displays an overlay of the six power curves associated with the retesting plans in this 
example. For these inputs, the 1-of-2 retesting plan for a median of order 3 using the 
background maximum and the 1-of-4 plan on individual observations using the 3rd highest 
background value achieve the best overall power (shown as a single curve on Figure 19-2). 
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As seen in Figure 19-2, the two plans that pass the second compliance well have visibly lower 
power — especially in the range of 2 to 3.5 standard deviations above background — than the 
four plans that failed CW-2. In such a situation, the user needs to carefully balance the risks 
and benefits of each acceptable resampling plan. In some cases, the cost of greater amounts of 
resampling may be outweighed by the added sensitivity of the test to evidence of groundwater 
contamination. � 
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This chapter describes control charts, a second recommended core strategy for detection 
monitoring. Control charts are a useful and powerful alternative to prediction limits. The Unified 
Guidance is the first EPA document to discuss retesting and simultaneous testing of multiple wells 
and/or constituents as they relate to control charts.  Research of these topics is still ongoing. 
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Control charts are a viable alternative to parametric prediction limits for testing groundwater in 
detection monitoring. They are similar to prediction limits for future observations in that a control chart 
limit is estimated from background and then compared to a sequence of compliance point measurements. 
If any of these values exceeds the control limit, there is initial evidence that the compliance point 
concentrations exceed background. 

Control charts can be constructed as either interwell or intrawell tests. The main difference is how 
background is defined and what measurements are utilized to build the control limit. Interwell control 
charts establish the control limit from designated upgradient and potentially other background wells.  
Intrawell control charts, on the other hand, employ historical measurements from a compliance point 
well as background.   Intrawell tests can only be appropriately applied if the historical compliance well 
background is uncontaminated. 

An advantage of control charts over prediction limits is that a control chart graphs the compliance 
data over time.  Certain varieties can also evaluate gradual increases above background over the period 
of monitoring.  Trends and changes in concentration levels can be easily seen since the sample 
observations are consecutively plotted on the chart.  This provides the analyst an historical overview of 
the pattern of measurement levels.  Prediction limits are typically constructed to allow only point-in-time 
comparisons between the most recent compliance data and background, making long-term trends more 
difficult to identify.1 

                                                 

1  Long-term results from repeated application of a prediction limit can be plotted over time, creating a graph similar in nature 
to a control chart. But this has been infrequently done in practice. 
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As a well-established statistical methodology, there are many kinds of control charts. Historically, 
control charts have been put to great use in quality engineering and manufacturing, but have more 
recently been adapted for use in groundwater monitoring.  The specific control chart recommended in 
the Unified Guidance is known as a combined Shewhart-CUSUM control chart (Lucas, 1982). It is a 
‘combined’ chart because it simultaneously utilizes two separate control chart evaluation procedures. 
The Shewhart portion is almost identical to a prediction limit in that compliance measurements are 
individually compared against a background limit. The cumulative sum [CUSUM] portion sequentially 
analyzes each new measurement with prior compliance data.  Both portions are used to assess the 
similarity of compliance data to background in detection monitoring. 

The Shewhart-CUSUM control chart works as follows. Appropriate background data are first 
collected from the specific compliance well for intrawell comparisons or from separate background 
wells for interwell tests.   The baseline parameters for the chart, estimates of the mean and standard 
deviation, are obtained from these background data. These baseline measurements characterize the 
expected background concentrations at compliance wells.  

As future compliance observations are collected, the baseline parameters are used to standardize 
the newly gathered data. After these measurements are standardized and plotted, a control chart is 
declared out-of-control if future concentrations exceed the baseline control limit. This is indicated on the 
control chart when either the Shewhart or CUSUM plot traces begins to exceed a control limit. The limit 
is based on the rationale that if the well remains uncontaminated as it was during the baseline period, 
new standardized observations should not deviate substantially from the baseline mean. If a release 
occurs, the standardized values will deviate significantly from baseline and tend to exceed the control 
limit.  The historical baseline parameters then no longer accurately represent current well concentration 
levels. 

Combined Shewhart-CUSUM control charts initially featured two control limits, one for testing 
the Shewhart portion of the chart, one for testing the CUSUM portion of the chart.  Later research on 
control charts (Davis, 1999; Gibbons, 1999) indicated that having separate control limits for the 
Shewhart and CUSUM procedures is generally not important.  Both control chart traces can instead be 
compared to a single control limit.  This modification not only makes the control chart method slightly 
easier to apply, but also aids in measuring the statistical performance of control charts over a variety of 
monitoring networks. 
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The basic procedure for constructing a control chart is presented below. Requirements and 
assumptions for control charts are discussed in later sections: 

Step 1. Given n background measurements (
 
x jB ), estimate the baseline parameters by computing the 

sample mean ( xB ) and standard deviation (sB). 

Step 2. For a compliance point measurement (xi) collected on sampling event Ti, compute the 
standardized concentration Zi: 
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Zi = xi − xB( ) sB  [20.1] 

Step 3. For each sampling event Ti, use the standardized concentrations from Step 2 to compute the 
standardized CUSUM Si.  Set S0 = 0 when computing the first CUSUM S1. 

 ( )[ ]1,0max −+−= iii SkZS  [20.2] 

 The notation max[A, B] in equation [20.2] refers to picking the maximum of quantities A and 
B. Furthermore, the parameter k designates half the displacement or shift in standard 
deviations that should be quickly detected on a control chart. Often k is set equal to 1, meaning 
that the control chart will be designed to rapidly detect upward concentration shifts of at least 
two standard deviations. Since Zi is standardized by the estimated baseline standard deviation, 
an increase of r units in Zi corresponds to an increase of r standard deviations above the 
baseline mean in the domain of concentrations xi. 

Step 4. To plot the control chart in concentration units, compute the non-standardized CUSUMs  Si
c  

with the equation: 

  Si
c = xB + Si ⋅ sB  [20.3] 

Step 5. Calculate the non-standardized control limit used to assess compliance of both future 
measurements (xi) and non-standardized CUSUMs (Ui). Traditionally, two parameters were 
used to compute standardized limits: the decision internal value (h) and the Shewhart Control 
Limit (SCL). The Unified Guidance instead recommends only one standardized control limit 
(h). Compute the non-standardized control limit (hc) as: 

  hc = xB + h ⋅ sB  [20.4] 

Step 6. Construct the control chart by plotting both the compliance measurements (xi) and the non-
standardized CUSUMs ( Si

c ) on the y-axis against the sampling events Ti along the x-axis. 
Also draw a horizontal line at the concentration value equal to the control limit, hc. 

Step 7. Moving forward in time from the first plotted sampling event T1, declare the control chart to 
be potentially out-of-control if either of two situations occurs: 1) the trace of non-standardized 
concentrations exceeds hc; or 2) the CUSUMs become too large, exceeding hc. 

The first case signifies a rapid increase in concentration level among the most recent sample 
data. The second can represent either a sudden rise in concentration levels or a gradual 
increase over time. A gradual increase or trend is particularly indicated if the CUSUM exceeds 
the control limit but the compliance concentrations do not. The reason for this is that several 
consecutive, small, increases in xi will not trigger the control limit, but may cause a large 
enough increase in the CUSUM. As such, a control chart can indicate the onset of either 
sudden or gradual contamination at the compliance point. 
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For background nickel data collected during 8 months in 1995 shown below, construct an intrawell 
control chart and compare it with the first 8 months of the compliance period (1996): 
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Step 1. As discussed in Section 20.3.3, control charts are a parametric procedure requiring normal or 
normalized data. Test the n = 8 baseline measurements for normality. A probability plot of 
these data provided in Figure 20-1 exhibits a mostly linear trend. The Shapiro-Wilk test 
statistic computed for these data is W = 0.896.  Compared to the α = .10 level critical point of 
w.10,8 = 0.851 (Table 10-3 of Appendix D), the Shapiro-Wilk test indicates that the baseline 
data are approximately normal.  Construct the control chart using the original nickel 
measurements. 
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Step 2. Use the 1995 baseline nickel data to compute the sample mean and standard deviation:  xB  = 
25.14 ppb and sB = 11.518 ppb. Then compute the standardized concentration Zi for each 1996 
compliance period sampling event using equation [20.1]. These values are listed in the fourth 
column of the table below. 
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Step 3. Compute the standardized CUSUMs as follows. First let the shift displacement parameter k = 
1 and set S0 = 0.  After subtracting k from each Zi, calculate the CUSUM using equation [20.2]
.  Note that none of the CUSUMs are positive until the first occurrence of a positive quantity 
(Zi – k).  As shown in the sixth column above, the standardized CUSUMs for the 6th, 7th and 
8th events are calculated as: 

 

  

S6 = max 0, 0.32 − 1( )+ 0�
�

�
� = 0

S7 = max 0, 1.61− 1( )+ 0�
�

�
� = 0.61

S8 = max 0, 4.92 − 1( )+ 0.61�
�

�
� = 4.53

 

Step 4. Calculate the non-standardized CUSUMs ( Si
c ) using the individual Zi, baseline mean and 

standard deviation parameters in equation [20.3]. These values are listed in the last column of 
the table above. For the 8th sampling event, this calculation gives: 

 
  
S8

c = 25.14 + 11.518 4.53( )= 77.31  

Step 5. Compute the non-standardized control limit using equation [20.4]. For purposes of this 
example, set h = 5; the non-standardized limit becomes: 

 
  
hc = 25.14 + 11.518 5( )= 82.73 ppb  

Step 6. Using the compliance period nickel concentrations and the non-standardized CUSUMs, plot 
the control chart as in Figure 20-2. The combined chart indicates there is insufficient evidence 
of groundwater contamination in 1996 because neither the nickel concentrations nor the 
CUSUM statistics exceed the control limit for the months examined.  However, both traces 
nearly exceed hc, and conceivably might do so in future sampling events if the apparent trend 
continues. If that were to happen, retesting can be performed to better determine whether the 
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increase was one or a series of chance fluctuations or an actual mean-level change in nickel 
concentrations. � 
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As with other statistical methods, control charts are based on certain assumptions about the sample 
data. There are also some minimum requirements for constructing them.  None of the assumptions or 
requirements are unique to control charts, although there are some special issues. 
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The methodology for control charts assumes that the sample data are statistically independent. A 
control chart can give misleading results if consecutive sample measurements are serially correlated (i.e., 
autocorrelated). For this reason, it is important to design a sampling plan so that distinct volumes of 
groundwater are analyzed at each sampling event (Section 14.3.1).  Duplicate laboratory analyses (i.e., 
aliquot or field splits) should also not be treated as independent observations when constructing a control 
chart. Gibbons (1999) recommends that control chart observations be collected no more frequently than 
quarterly. Since physical independence does generally not guarantee statistical independence (Section 
14.1), a test of autocorrelation using the sample autocorrelation function or rank von Neumann ratio tests 
(Section 14.2) should be performed to determine whether the current sampling interval affords 
uncorrelated measurements. 

If the background data exhibit a clear seasonal cyclical pattern, the values should be deseasonalized 
before computing the control chart baseline parameters. For a seasonal pattern at a single well, the 
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method of Section 14.3.3.1 can be used to create adjusted measurements having a stable mean.  At 
several or a group of wells indicating a common seasonal pattern, the adjusted values can be computed 
using a one-way analysis of variance [ANOVA] for temporal effects (Section 14.3.3.2).  When baseline 
data are deseasonalized, it is essential that newly collected compliance measurements also be 
deseasonalized in the same manner.   It is presumed that the same pattern or physical cause will impact 
future data in the same manner as for the baseline measurements. 

To deseasonalize compliance point measurements, simply use the seasonal and grand means 
estimated from background in computing the adjusted compliance point values. If the control chart 
remains in control following deseasonalizing, the existing background can be updated with the newer 
measurements.  However, the revised background set should be checked again for seasonality and the 
seasonal and grand means re-computed, in order to more accurately adjust future measurements. 

Control charts also assume that the background mean is stationary over time. This means there 
should be no apparent upward or downward trend in the background measurements. A trend imparts 
greater-than-expected variation to the background data, increasing the baseline standard deviation and 
ultimately the control limit. The net result is a control chart that has less power to identify groundwater 
contamination. Tests for trend described in Chapter 17 can be used to check the assumption of no 
background trends. Should an upward or downward trend be verified, the background data should not be 
de-trended. While it is possible to construct and use a control chart with de-trended background and 
future data, the assumption that the trend will continue indefinitely is very problematic.  The trend 
should first be investigated to ensure that background has been properly designated.  Other monitoring 
wells should be checked to see if the same trend is occurring, indicating either evidence of an earlier 
release or possibly a sitewide change in the aquifer.  In any case, a switch should be made to a trend test 
rather than a control chart. 

As noted, control charts can be employed as either interwell or intrawell tests. However, interwell 
control charts require a spatially stationary mean across the monitoring network. If spatial variability 
exists among background wells for certain constituents, interwell control charts will be no more 
interpretable than prediction limits. A related problem can plague intrawell control charts if there is prior 
spatial variability (i.e., some compliance wells are already contaminated prior to selection of intrawell 
backgrounds). Historical observations should be used as baseline data in intrawell tests only if the 
compliance wells are known to be unaffected by a release from the monitored unit. Otherwise, the 
control limit based on the greater-than-expected background values may be set too high to identify 
current contamination. 
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Both background mean and standard deviation estimates are needed to construct a control chart 
limit. The Unified Guidance recommends at least n = 8 measurements for the defining the baseline, 
particularly to ensure an accurate standard deviation estimate.  Baseline observations are traditionally not 
plotted on the chart, although it may be visually helpful to include background values on the plot using a 
distinct symbol (e.g., hollow instead of filled symbol). 

Whether baseline observations are obtained from upgradient background wells for interwell testing 
or from individual compliance well historical data for intrawell use, these data are only small random 
samples used to estimate the true background population characteristics.  Any particular sample set may 
not be adequately representative.  Because of this likelihood, the background sample size requirements 
suggested above for constructing a control chart should be regarded as a minimum.  More background 
observations should preferably be added to the initial set to improve the characterization of the 
background distribution. 

For interwell control charts, periodic updating of background (Chapter 5) poses no difficulty. New 
observations should be collected at background wells on each sampling event. Then, every 1-2 years, the 
newly collected background should be added to the existing background pool after testing/checking for 
statistical similarity. The revised background can be used to re-compute the baseline parameters and, in 
turn, the control limit. 

Updating background for intrawell control charts depends on the control chart remaining ‘in-
control’ for several consecutive sampling events. As long as a confirmed exceedance does not occur, the 
in-control compliance measurements collected since the last background update can be tested against the 
existing background for statistical similarity using a Student's t- or Wilcoxon rank-sum test (Section 
5.3).  ASTM Standard D6312-98 (1999) recommends testing the newly revised background set for 
trends, using trend tests including those in Chapter 17.  The ASTM methodology is intended to avoid 
incorporating a subtle trend into the control chart background, which influences the re-computed 
baseline parameters and weakens the statistical power of the control chart to identify contaminant 
releases. 

If the comparison of recent in-control measurements against existing background indicates a 
statistically significant difference, it may reflect changes in natural groundwater conditions unrelated to 
contamination events. In these circumstances, it is possible to update background by creating a ‘moving 
window.’ The background sample size n remains fixed, with only the most recent n measurements 
included as background for computing baseline parameters.  Earlier sampling events are excluded. The 
overriding goal is to ensure that background reflects the most current and representative groundwater 
conditions (Chapter 3). 

Despite the apparent benefits, the statistical performance of control charts is only partially known 
when background is periodically updated.  Davis (1999) has performed the most extensive simulations 
of this question.  He suggests that substantially different simulation results occur with the CUSUM 
portion when background is periodically updated (especially early on) and combined with either a small 
maximum run length or a ‘warm-up’ period or both (see Section 20.4.1). 
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Two other issues affect both control charts and prediction limits when updating intrawell 
background. First, if background is periodically augmented by adding new measurements (either from 
upgradient background wells or from recent in-control compliance measurements), the overall 
background sample size is increased. This in turn should cause the prediction or control chart limit to 
decrease. 

 For instance, prediction limit tables in Chapter 19 demonstrate that as the background sample 
size increases, lower prediction limit κ−multipliers are appropriate.  The expanded background sample is 
used to re-compute the prediction limit, provided that the measurements added to background do not 
indicate an adverse change in groundwater quality. New compliance measurements are then tested 
against the revised prediction limit. But the same cannot be done with control charts unless the CUSUM 
is reset to zero. The reason is that the CUSUM will have already been affected by those compliance 
measurements now being added to intrawell background.  An independent comparison between 
compliance point values and background is thus precluded. Consequently, the Unified Guidance 
recommends that the CUSUM portion of the control chart be reset after each periodic update of intrawell 
background.2 

The second issue is how to update intrawell background when an initial measurement has exceeded 
the control or prediction limit, but one or more resamples disconfirm the exceedance.  Routine detection 
monitoring continues in this situation. No confirmed exceedance is registered for a prediction limit test 
and the control chart remains in-control.  Should the initial exceedance be included or excluded when 
later updating intrawell background? 

The Unified Guidance recommends a strategy parallel to the handling of outliers (Chapter 12). If 
the exceedance can be shown to be a measurement in error or a confirmed outlier, it should be excluded 
from the revised background. Otherwise, any disconfirmed exceedances (including any resamples that 
exceed the background limit but are disconfirmed by other resamples) should probably be included when 
updating the background. The reason is that background limits designed to incorporate retesting are 
computed as low as possible to ensure adequate statistical power. The trade-off is that compliance 
measurements legitimately similar to background but drawn from the upper tail of the distribution, 
sometimes exceed the limit and have to be disconfirmed with a resample. Any exceedance not 
documented as an error or outlier is most likely representative of some portion of the background 
population that previously had gone unsampled or unobserved. 
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The combined Shewhart-CUSUM control chart is a parametric procedure. This implies that 
background used to estimate the baseline parameters should either be normal or normalized via a 
transformation. Normality can be tested on either the raw measurement or transformed scale using one of 
the goodness-of-fit techniques described in Chapter 10. If the hypothesis of normality is accepted, 

                                                 

2  The same ‘overlapping’ dependence between the CUSUM and revised background will also be true when background is 
updated using a ‘moving window’ approach. The CUSUM should therefore be reset in these cases too. However, since the 
background sample size is kept fixed, the standardized control limit (h) will not decrease as it does when background is 
augmented. 
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construct the control chart on the raw measurements. If it is rejected, try a transformation and retest the 
transformed data for normality. If the transformation works to normalize background, construct the 
control chart on the transformed measurements, being sure to use the same transformation on both 
background and the compliance values to be plotted. 

Unlike prediction limits, no non-parametric version of the combined Shewhart-CUSUM control 
chart exists. If the background sample cannot be normalized perhaps due to a large fraction of non-
detects, a non-parametric prediction limit should be considered (Section 19.4).  Control charts will be 
most appropriate for those constituents with a reasonably high detection frequency.  These include many 
inorganic constituents (e.g., certain trace elements, indicators and geochemical monitoring parameters) 
that occur naturally in groundwater, or for other persistently detected, site-specific organic chemicals. 

If no more than 10-15% of the data are non-detect, it may be possible to normalize the data via 
simple substitution (Section 15.2) of half the reporting limit [RL] for each background non-detect.  A 
normalizing transformation can sometimes be found using a censored probability plot (Chapter 15) for 
background data containing a substantial fraction of non-detects up to 50%.  A censored estimation 
technique such as Kaplan-Meier or Robust Regression on Order Statistics [Robust ROS] (Chapter 15) 
can then be used to compute estimates of the baseline mean ( Bµ̂ ) and standard deviation ( Bσ̂ ) that 
account for the left-censored measurements. These adjusted estimates should replace the background 
sample mean ( xB ) and standard deviation (sB) in the control chart equations of Section 20.2.  The 
Unified Guidance differs somewhat from the recommended approach in ASTM Standard D6312-98 
(ASTM, 1999), which is to set all non-detects identically to zero. 

No matter how background non-detects are treated, control charts require an additional step for 
future observations that isn't needed with prediction limits. Each new compliance point measurement 
statistic must be added to the CUSUM associated with previous sampling events. If the new observation 
is a non-detect, some value (typically a fraction of the RL) needs to be imputed for the censored 
measurement in order to update the CUSUM. The Unified Guidance recommends that half the RL be 
substituted for these measurements.3 

                                                 

3  If an intrawell control chart is constructed and it remains ‘in-control’ until the next background update, any non-detects 
observed in the meantime should be treated as left-censored measurements for purposes of updating the baseline mean and 
standard deviation estimates. In other words, the simple substitution of RL/2 should only apply temporarily to compute an 
updated CUSUM. 
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A significant difference exists between control charts and prediction limits in setting statistical 
performance criteria. Standard equations described in previous chapters allow the user to generate an 
exact confidence level (1–�) for prediction limits.  Obtaining similar confidence levels for the Shewhart-
CUSUM control charts needs to be done experimentally through varying the two background control 
chart  limits (h) and the displacement parameter (k), as well as the retesting options.  The control chart 
parameter limits in the two previous EPA RCRA statistical guidance documents were based on work by 
Lucas (1982), Hockman & Lucas (1987), and Starks (1988).  Monte Carlo simulations for various 
combinations of control chart parameters (without retests) were used to develop the overall 
recommendations in their papers. 

The specific parameter choices were not fixed, but appeared to work best in simulations at a single 
well. Starks (1988) recommended setting h = 5 and k = 1 for standardized measurements, especially in 
the early stages of monitoring. He further suggested that after 12 consecutive in-control measurements, 
the baseline mean and standard deviation be updated to include more recent sampling measurements. 
The values of k and SCL (the separate Shewhart control limit) could then be reduced to k = 0.75 and SCL 
= 4.0.  In effect, this tightens the control chart limits to reflect that additional data are available to better 
characterize the baseline population. 

More recent research (notably Gibbons, 1999) has demonstrated that control charts from the 
quality control literature do not account for several important characteristics of groundwater monitoring 
networks. The most important is the problem of multiple comparisons (i.e., the need to simultaneously 
conduct testing of many well-constituent pairs during an evaluation period described in Chapter 6). 
Control chart performance is typically assessed on an individual well basis, rather than over a network of 
simultaneous tests. The recommended control limits have no obvious connection to the expected false 
positive rate (α), nor is the traditional control limit adjustable like the κ-factor in prediction limits.  
There is a need to account for differences in background sample sizes, a desired false positive rate, and 
the number of monitoring network tests in similar fashion to prediction limits.  Moreover, early research 
and guidance did not address the issue of retesting in control charts. Retesting provides substantial 
improvements in prediction limit performance, and its potential needs to be evaluated for control charts. 

It is standard practice to discuss the performance of prediction limits in terms of statistical power 
and false positive rates.  However, statistical performance of control charts is usually measured via the 
average run length [ARL].  The ARL is the average number of sampling events before the control limit 
is first exceeded, identifying an ‘out-of-control’ process. Ideally, the ARL should be large when the 
mean concentration of the tested constituent is at or near the baseline average, but increasingly smaller as 
the true mean is gradually shifted above baseline.  

Put in standard statistical terms, the control chart should not easily or quickly signal false evidence 
of a release when a release has not occurred.  To have a low false positive rate when the null hypothesis 
of no contamination is true, the chart should stay ‘in-control’ for a long time indicated by a large ARL.  
The statistical power for detecting a release when it occurs should be as high as possible. A short ARL  
will indicate that a control chart is quickly determined to be out-of-control. 
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False positive rates (α) for CUSUM control charts cannot be equated precisely with ARLs.  But it 
has been found that the ARLs closely follow a geometric distribution pattern with a mean equal to (1/α). 
Thus, a control chart with an ARL of 100 would have an associated false positive rate of roughly 1%.  
The relationship is not exact, especially for combined Shewhart-CUSUM control charts. It is also 
affected by the randomness in the background data used to establish the control chart baseline. 

Thus, the Unified Guidance offers a new framework for measuring control chart statistical 
performance. It is suggested that measuring false positive rates in control charts be conducted by 
establishing a time frame or run length of interest, specifically, a period of one year. A false positive is 
counted if the chart has a confirmed exceedance sometime during the year, under the assumption of no 
contaminant release. Statistical power is similarly evaluated for a fixed time interval (e.g., one year) by 
measuring the proportion of run lengths with confirmed exceedances during that interval. In this way, 
both the false positive rate and power are tied to a specific one-year time frame. 

This framework is consistent with the guidance recommendations that prediction limit 
performance be measured according to an annual, cumulative 10% site-wide false positive rate 
[SWFPR] and that cumulative, annual effective power be comparable to the EPA reference power curves 
[ERPC]. The suggested framework for control charts allows a direct comparison with prediction limits 
when designing alternate statistical approaches. 
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Until recently, control charts were not designed to address the SWFPR when testing multiple well-
constituent pairs.  Furthermore, it was not clear to a user how to adjust for multiple tests using fixed 
control limits (SCL, k and h). Because of these problems, Gibbons (1999) performed a series of Monte 
Carlo simulations to gauge intrawell control chart performance for up to 500 simultaneous tests. 
Gibbons also examined the outcomes when the single Shewhart and CUSUM decision limit was allowed 
to vary between h = {4.5, 5.0, 5.5, and 6.0}.  He found that control charts could be designed with both 
high power and a low SWFPR, as long as retesting was incorporated into the methodology. 

Additional Monte Carlo simulation work was performed by Davis (1999).  He found that control 
charts perform similarly to prediction limits when both use retests.  But he also noted that certain 
favorable outcomes in Gibbons (1999) were the result of combining frequent updating of background 
and a ‘warm-up’ period for the chart.  In the latter period, any control limit exceedances were ignored.  
The simulations were based on small maximum run lengths. 

Other researchers have noted (for instance, Luceño and Puig-Pey, 2000) that the run length 
distribution of CUSUM control charts is often close to geometric.  This implies that even when the ARL 
is large, there can be significant probability of an early failure. The difficulty in a real-life setting is that 
one will not know whether an early exceedance of the control limit is due to contaminated groundwater 
or simply a false positive exceedance for an otherwise in-control chart. This guidance recommends 
against the use of ‘warm-up’ periods when implementing or assessing the performance of Shewhart-
CUSUM control charts. 
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Gibbons (1999) provides results for a number of control chart limit options, but does not determine 
limits which can provide exact false positive rate control.  A number of potential commonly applied 
retesting strategies are also not evaluated.  In contrast, both Gibbons (1994) and the Unified Guidance 
(Chapter 19) do provide such control for prediction limits using a wider array of retesting strategies.  

Facilities may need to conduct theirown specific Monte Carlo simulations if the published 
literature options cannot be applied at their site.  Simulations might be needed for either intrawell or 
interwell control charts or both.  Overall methodologies for Monte Carlo simulations are provided 
below.  The first step for either type test is a simulation of the cumulative annual false positive rate. 
Then a second simulation measures the cumulative, annual statistical power. 

To perform an intrawell simulation, repeat the following steps for a large number of simulations 
(e.g., Nsim = 10,000): 

1. Determine the total number of well-constituent pairs for which statistical testing is required, as 
well as the number of pairs at which intrawell control charts will be constructed. Use the basic 
subdivision principle (Section 19.2.1) to determine the per-test false positive rate (�test) 
associated with each control chart that meets the target SWFPR. 

2. Determine the intrawell background sample size (n). Generate n standard normal measurements. 
Then form baseline estimates by computing the sample mean ( xB ) and standard deviation (sB). 

3. Pick a set of possible standardized control limits (h). Choose a maximum run length (M), based 
on the number of sampling events conducted each year (e.g., M = 4 for quarterly sampling). 

4. For each potential control limit (h), compute the non-standardized control limit using equation 
[20.4]. Then simulate the behavior of the control chart from sampling event 1 to sampling event 
M by generating standard normal compliance measurements for each event. Generate enough 
random measurements to account for resamples potentially needed with a selected retesting 
strategy. 

5. Test the initial measurement associated with each sampling event against the non-standardized 
control limit. Also form the CUSUM for events 1 to M using equations [20.2] and [20.3]. 
Compare the non-standardized CUSUM against the control limit. 

6. If either the initial measurement or the CUSUM exceeds hc, use the resample(s) for that sampling 
event to perform a retest (see below). If the retest confirms the initial exceedance, record a false 
positive for that particular simulation (out of Nsim). 

7. After all Nsim runs have been conducted, compute the observed false positive rate (�h) associated 
with each possible standardized control limit (h) by dividing Nsim into the number of observed 
false positives. Set the final control limit equal to that value of h for which �h is closest to �test. 

The simulation for an interwell control chart is similar to the intrawell case, with a few key 
differences. First, instead of a per-test false positive rate, the basic subdivision principle must be used to 
compute a per-constituent false positive rate (�const). The reason is that the same background 
measurements for a given constituent are used to test each of the compliance wells in the network. 
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Secondly, when generating standard normal compliance point measurements in Step 4 of the intrawell 
simulation, a set of such random observations needs to be generated for each of the w wells in the 
network. The behavior of w control charts must be simulated using a common set of background data 
and single control limit for each one. 

Once a control limit meeting the target SWFPR has been established, a second Monte Carlo 
simulation is run to determine the statistical power of the control chart. Since effective power is defined 
as the ability to flag a single contaminated well-constituent pair, the basic steps are the same for either 
interwell or intrawell control charts. Repeat the following over a large number of simulations (Nsim). 

1. Determine the background sample size (n). Generate n standard normal measurements. From 
these, form baseline estimates by computing the sample mean ( xB ) and standard deviation (sB). 

2. Using the standardized control limit (h) chosen in the first Monte Carlo simulation, compute a 
non-standardized control limit using equation [20.4]. Then simulate the behavior of the control 
chart from sampling event 1 to sampling event M by generating sets of normal N(�,1) 
compliance measurements for each event, where � varies from 1 to 5 by unit steps. Generate 
enough random measurements in each set to account for resamples potentially needed with a 
selected retesting strategy. 

3. For each set of successively higher-valued compliance measurements, test the initial 
measurement associated with each sampling event against the non-standardized control limit. 
Also form the CUSUM for events 1 to M using equations [20.2] and [20.3]. Compare the non-
standardized CUSUM against the control limit. 

4. If either the initial measurement or the CUSUM exceeds hc, use the resample(s) for that sampling 
event to perform a retest (see below). If the retest confirms the initial exceedance, record a true 
detection for that particular mean-level � and simulation (out of Nsim). 

5. After all Nsim runs have been conducted, compute the observed power (1–�) associated with each 
true mean level (�) by dividing Nsim into the number of observed detections. The simulated 
effective power curve for standardized control limit (h) is a plot of (1–�) versus � for � = 1 to 5. 

If the standardized control limit identified during Monte Carlo simulation has effective power 
comparable to the appropriate ERPC (matching the site-specific sampling frequency to one of the three 
curves in Chapter 6: quarterly, semi-annual, or annual), h can be used to form site-specific control 
limits. For interwell limits, compute the (upgradient) background mean and standard deviation for each 
monitoring constituent and use equation [20.4] to form the final, non-standardized control limits. For 
intrawell limits, use the same equation only with intrawell background at each well-constituent pair. 
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Control chart and prediction limit tests are only practical for most monitoring networks if retesting 
is part of the procedure, demonstrated both by Gibbons (1999) and Davis (1999).  A key issue is to 
decide how control chart retesting should be conducted.  Practical retesting strategies for prediction 
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limits on future observations are described in Section 19.1, including both 1-of-m (for m = 2, 3, 4) and 
modified California plans. 

ASTM Standard D6312-98 (1999) recommends a 1-of-2 retesting strategy: whenever an 
exceedance of the control limit occurs on a given sampling event, the next quarterly sampling event is 
used as the resample. Furthermore, if the exceedance is not confirmed by the resample, the ASTM 
standard recommends that the initial exceedance be replaced in the CUSUM by the follow-up sampling 
event, thus implicitly assuming that the initial observation was an error. 

Gibbons (1999) considers the performance of other retesting plans, including 1-of-2, 1-of-3, and 
the original Cal-3 plan (see Section 19.1 and Appendix B).  For each plan, resampling is triggered when 
the most recent observation either by itself exceeds or causes the CUSUM to exceed the limit. Then, 
each resample (if more than one) is compared against h.  The initial exceedance measurement is 
removed from the CUSUM computation, replaced by the resample, and then re-compared to the control 
limit. A statistically significant increase [SSI] is declared only if the resample verifies the initial 
exceedance (or both resamples for a 1-of-3 plan). 

Gibbon's study and ASTM Standard D6312-98 raises an important concern as to the most 
statistically powerful treatment of the CUSUM when an initial exceedance is not confirmed by retesting.  
A second concern addresses when resamples should be collected. 

The Unified Guidance suggests two practical possibilities to address the first concern.  The initial 
exceedance can be removed from the CUSUM altogether, re-setting the CUSUM to its value from the 
previous sampling event.  As noted above, this is essentially assuming the first sampling event was in 
error.  Another option is to replace the initial exceedance by the first resample which disconfirms the 
exceedance, and then re-compute the CUSUM with that resample. 

In either strategy, the effects on statistical power and accuracy should be simulated when 
constructing site-specific control limits as in the procedure outlined above. Both the false positive rate 
and power depend on a faithful simulation of all aspects of the control chart testing procedure.  This 
includes background sample size, the number of well-constituent pairs evaluated, the retesting strategy 
and how the CUSUM is adjusted for resampling. 

The second issue concerns when resamples should be collected.  The Unified Guidance does not 
recommend using the next scheduled sampling event as a resample. If the exceedance were due to a 
laboratory analytical error or calculation mistake, a more quickly retrieved resample can resolve the 
discrepancy without waiting until the next quarterly or semi-annual monitoring event.  

Where multiple resamples are used (a 1-of-3 plan, for instance), one would have to wait two 
additional sampling rounds simply to collect the resamples. These in turn could not be plotted on the 
control chart as regular sampling events without intermingling the roles of resamples and non-resamples, 
thereby complicating the interpretation and assessment of control chart performance.  The common 
guidance recommendation is to identify an intermediate period or periods for resampling between 
regularly scheduled evaluations for both control charts and prediction limits. 
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